

Read this manual before operation

- > The content include of electric connections and operating steps
- Read the manual to operate the systems

RDEncLas400G

intelligent laser control module

RuiDa Technology Co., Ltd

Addr:	2th	floor,Techno	logy	Building,NO	.,1057	Nanhai
	Avenue, Nanshan		Distrio	ct,Shenzhen	city,Gu	angdong
	Prov	vince,P.R.China				
Tel:	0755-	-26066687				
Fax:	0755-	-26982287				
E-mail:	sales	@rd-acs.com				
Web:	www	.rd-acs.com				

COPYRIGHT

All rights reserved.You may not reproduce, transmit, store in a retrieval system or adapt thispublication, in any form or by any means, without the prior written permissionof RuiDa, except as allowed under applicable copyright laws. We have identifiedwords that we consider as trademarks. Neither the presence or absence oftrademark identifications affects the legal status of any trademarks.

CERTIFICATION DECLARATION

CE

The product has been certified by the CE (Commutate European) safety certification. It has passed the corresponding conformity assessment procedure and the manufacturer's declaration of conformity, in accordance with the relevant EU directive.

ROHS

This product has been certified by EU legislation (Restriction of Hazardous Substances) Safety certification; comply with relevant EU environmental regulations.

FCC

This product has been certified by the Federal Communications Commission for safety, Comply with us electronic safety regulations.

SAFETY INFORMATION

When using this system, please make sure the operation is correct and the usage is safe. Some signs or text will be used to remind you to pay attention to the dangerous matters and some important information.

Dangerous:

Indicates a serious danger. In the process of use, if the operation is improper or the way of use is wrong, it may cause serious injury or even death to the user. Please do not operate it easily until you have made sure that the operation method is correct and the way of use is correct.

Warning:

Danger.n the process of use, if the operation is improper or the use is wrong, which may lead to the injury of the personnel, please do not operate the personnel and related personnel easily, until ensure the correct operation method and use method is correct before use.

Cautious:

Represents the potential risk of the product. In the process of use, if the use method is wrong or improper operation, it may cause damage to the product or some parts. Please do not use it until you have made sure that the operation method is correct and the usage is correct.

Important:

Represents important information to be paid attention to during the use of the product.Please do not ignore this information, this information will provide effective operational help.

This sign indicates laser radiation, which is usually posted on products with laser output. Please be careful with laser and pay attention to safety when using this kind of equipment.

Sign in , Devanning , Examine cargo

The product itself with plastic or metal shell, can protect the external electrical components from damage. The products are packed in foam bags and anti-static bags. If there is any external damage to the package, check the equipment and notify the carrier and carrier in writing of the damage.

Inportant:

After receiving the product, please check whether the outer package is intact, check whether the product is complete after unpacking and whether all parts are intact. If any damage is found, please contact ruida immediately.

Remove all cargo from package and keep packing material and wiring parts. Please take care of the safety of the goods when unpacking them.After taking out the goods, please check whether the parts are complete and intact. If any missing parts or damaged parts are found, please contact ruida technology immediately.Do not install or debug the equipment if any obvious damage is found.

Accessories:

Part	Quantity	Note
LCM controller	1	Main controller
DB9 Serial connection line	1	RS232 Serial communication connection line
2-P green connectors	1	
3-P green connectors	1	
4-P green connectors	3	
6-P green connectors	4	

Contents

Chapte	r 1 Introduction1
1.1	Specifications2
1.2	Outside dimensions of LCM
Chapte	r 2 Control interface 4
2.1	Electrical wiring diagram5
2.2	Universal output (CN1)7
2.3	Universal input (CN2)8
2.4	Laser control interface (CN3, CN4) 10
2.5	RS232 communication interface (CN4)12
2.6	Power supply (CN5)13
2.7	Encoder or pulse input interface (CN6、CN7、CN8)13
2.8	Analog input (CN9)14
2.9	Encode switch14
2.10	EtherCAT15
2.11	USB interface15
2.12	LED indicators15
Chapte	r 3 Wiring diagram for lasers16
3.1	Glass CO2 laser
3.2	RF CO2 laser
3.3	Fiber laser control17
3.4	Fiber laser control
3.5	UV laser19
Chapte	r 4 Commissions 20
4.1	Preparation for use 21
4.2	Parameters configuration software22
4.3	Trouble shooting

Section 1 Introduction

CONTENTS:

Specifications

Outside dimensions of LCM

1.1 Specifications

NN	Characteristics	Min.	Тур.	Max.	Unit
1	PSP high width	0.01	0.2	50.00	mm
2	PSP low width	0.01	0.2	50.00	mm
3	PSV frequency	1.0	20.0	300.0	KHz
4	PSV resolution	0.1	1	100.0	%
5	Laser on delay	0.00		100.00	ms
6	Laser off delay	0.00		100.00	ms
7	Power for fiber laser	0.1		100	%
8	Standby frequency	1.0	10.0	300.0	KHz
9	FPS delay	-30.000	0	30.000	ms
10	FPS width	0	0	50.000	ms
11	Encoder frequency	1		50000	KHz
12	Input pulse frequency	1		50000	KHz
13	BPS for RS232		115200		bps

1.2 Outside dimensions of LCM

Section 2 Control interface

CONTENTS:

2.1 Electrical wiring diagram

Sample 1: laser source is RF CO2 laser. Control pulse from motion controller are the feedback signals for calculation. This is shown as picture 2.1.1.

Sample 2: laser source is FIBER laser. AB signals from encoder are the feedback signals for calculation. This

is shown as picture 2.1.2.

Picture 2.1.2	electrical	wiring	diagram
---------------	------------	--------	---------

2.2 Universal output (CN1)

The output definition is shown as table 2.1

PIN	Signal	Definition	Description
DIN1		Shuttor control output	Control the shutter or enable of laser.
PINI	0010	Shutter control output	Open collector output. Able to drive relays
			Output alarm signal to motion controller.
			When LCM detects the alarm of external
PIN2	OUT1	Alarm output	devices and internal error, the signal is
			activated.
			Open collector output. Able to drive relays
PIN3	OUT2	Reserved	—
PIN4	OUT3	Reserved	—
PIN5	OUT4	Reserved	—
PIN6	GND	—	—

2.3 Universal input (CN2)

LCM outputs laser gate signal in real time by detecting the laser control signals from the motion controllers. This is shown as picture 2.2. Active low is in default. But user can change the active level by change the parameter⁽¹⁾.

When a laser piercing is needed, there is another signal specialized for laser piercing.

It is active low. If a low level is active, the LCM will output a piercing power for laser piercing.

Picture 2.2 laser control principle

The input definition is shown as table 2.2.

PIN	Signal	Definition	Description
1	INO	Shutter control input ⁽²⁾	Connect to laser shutter control signals or enable signal from the motion controllers. Active low. OUTO signal is synchronized with this input.
2	IN1	Alarm input ⁽³⁾	External alarm input. Active low. OUT1 signal is synchronized with this input.
3	IN2	Laser control input	Connect to laser control signals from the motion controllers. Active low in default. Active level can be redefined. Compatible with 24V or 5V.
4	IN3	Piercing signal input	If the external controller support laser piercing function, this is input for this signal. During the laser piercing, the LCM output laser piercing power. Compatible with 24V or 5V.
5	IN4	Reserved	
6	GND	Reserved	

NOTICE:

(2), (3)Compatible with 24V or 5V.

2.4 Laser control interface (CN3, CN4)

Laser control interface gives laser control signals that include of laser gate, PWM, FPS, and analog. With these signals, different laser sources can be supported such as UV laser, FIBER laser YAG laser, CO2 laser. The signals for laser are defined as table 2.3.

Notice: LON, PWM and FPS can compatible with 24V or 5V. Active level of LON signal can be redefined with parameter⁽⁴⁾. User can changed it with configuration software based on RS232. LON, PWM at 5V level support differential output. This is shown as picture 2.3. FPS signal level can be selected 5V or $24V^{(5)}$. L_AN analog signal output scale can be selected from 0^{5V} to 0^{10V} .

Picture 2.3 LON signal

Table 2.3 Definition for LCM laser control.

PIN	Signal	Definition	Description		
	CN3 connector				
PIN1	LON_5V-	Differential output.	Laser emission control signal. Active low. TTL level. Compatible with TIA/EIA-422-B.		
PIN2	LON_5V+	Differential output.	Laser emission control signal. Active high. TTL level, Compatible with TIA/EIA-422-B.		
PIN3	PWM_5V-	Differential output.	Laser modulation signal. Active low. TTL level. Compatible with TIA/EIA-422-B.		
PIN4	PWM_5V+	Differential output.	Laser modulation signal. Active high. TTL level. Compatible with TIA/EIA-422-B.		
PIN5	FPS	FPS	First pulses killer. Active level can be defined by an encoder on board.		
PIN6	L_AN	Analog	Voltage scale can be defined by an on board encoder. 5V or 10V can be changed.		
		CN4 conne	ctor		
PIN2	LON_24V	LON	Laser gate control signal,24V.		
PIN3	PWM_24V	PWM	Laser modulation signal, 24V.		
PIN6	VCC	+5V or 24V	Support +5V and 24v. +5V in default		
PIN1	GND	Referenced ground	_		

NOTICE:

Parameter in the laser item names input active level. Change it to "High" level when the external input is high valid level. Otherwise select "Low".

Laser Para			
General parameters			
			1
Input active level: High	LON active	level: High 👻	PWM active level: High
		Low	
Laser on delay(ms):	0.00 Laser off dela	y(ms): 0.00	
Ŧ			
Laser type			
0.71			0.446 0.184
UDe glass	CO2 O RF CO2 las	er 🔮 FIBER	VAG OUV
Laser freq(kHz)	: 5.0	Pump current	:(%): 90.0
a			
Standby freq(kHz)	10.0	Standby powe	(%);
a	0.000		1.000
HPS delay(ms)	0.000	HPS Width	(ms): 1.000
Laser type	Param	eters	Signal
Tube glass CO2			LON L_AN
RF CO2 laser	Laser freq Standby	freq and power	LON V PWM V Standby PWM
FIBER laser	Pump current Laser	freq	LON V PWM V L_AN
YAG laser	Laser frequency V FP:	5 delay 、FPS width	LON V PWM V FPS
UV laser	Laser frequency		LON V PWM

2.5 RS232 communication interface (CN4)

RS232 communication interface is specialized for parameters configuration by software running on it. Table 2.4 is the definition of the interface.

PIN	Signal	Definition	Description
PIN1	GND	Referenced ground	—
PIN4	RXD	RXD	To RXD of computer
PIN5	TXD	TXD	To TXD of computer
PIN6	VCC	+5V or 24V	Support +5V and 24v. +5V in default

Table 2.4 Definition of RS232 communication interface

Picture 2.4 shows the wiring of RS232 communication.

		4	RXD		- RXD	2	
L C M	CN4	5	TXD	orange	- TXD	3	PC
		1	GND		GND	5	

Picture 2.4 wiring of RS232 communication

2.6 Power supply (CN5)

Table 2.5 shows	the definition	of the power	supply.
-----------------	----------------	--------------	---------

PIN	Signal	Definition	Description
PIN1	VCC	+24V	+24V, > 2A
PIN2	GND	Referenced ground	—
PIN3	PGND	Shield ground	To the earth

2.7 Encoder or pulse input interface (CN6、CN7、CN8)

LCM support AB quadrate encoder input or pulse+direction input. This can be selected with parameters in the LCM. This can be done by a software for LCM. Table 2.6 shows the definition of the signals of CN6, CN7, CN8.

Table 2.6

PIN	Signal	Definition	Description
PIN1	B+	B+ from encoder or Dir+ from motion controller	A+,A- and B+,B- are differential signals from rotary encoder or
PIN2	В-	B- from encoder or Dir+ from motion controller	linear encoder. Pulse+,Pulse- and Dir+,Dir- are
PIN3	A+	A+ from encoder or Pulse + from motion controller	differential signals from motion controller.
PIN4	A-	A- from encoder or Pulse - from motion controller	

Picture 2.7 shows the wiring from LCM to encoder or motion controller.

Picture 2.7 wiring of encoder or pulse input interface

2.8 Analog input (CN9)

LCM support analog input for analog voltage detecting. This interface gives much more flexible usage for users. The definition is shown in table 2.7.

Table 2.7					
PIN	Signal	Definition	Description		
PIN1	AGND	Analog ground			
PIN2	AN_IN	Analog input	0-10V		

2.9 Encode switch

FPS active level configuration

FPS signal support 5V and 24V. This can be select according different encoder status. In default, the FPS is 5V logic level. Encoder switch configuration is shown as picture 2.9.

Analog output configuration

L_AN is an analog output signal. The scale of the voltage output can be 0^{5V} or 0^{10V} . The scale that should be selected is up to the laser source requirement. In default, it is 0^{5V} . Encoder switch configuration is shown as picture 2.10.

2.10 EtherCAT

EtherCAT[®] is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. If RDEncLas400G do not support EtherCAT. Only RDEncLas400N support the EtherCAT.

2.11 USB interface

USB interface is specialized for U disk. This interface is usually for firmware upgrading. Never connect this to the USB interface on the computer.

2.12 LED indicators

LED	Description
+24V	Power indicator for 24V
RUN	System running indicator. Twinkle once every 1second.
	Under test mode, twinkle once every 3 seconds.
OUT0	Shutter signal indicator
OUT1	Alarm signal indicator
OUT2	Signal Indicator for OUT2
OUT3	Signal Indicator for OUT3
OUT4	Signal Indicator for OUT4
INO	Shutter signal indicator of the input from motion controller
IN1	Laser control signal indicator of the input from motion controller
IN2	Laser piercing signal indicator of the input from motion controller
IN3	Alarm signal indicator of the input from motion controller
IN4	Indicator for IN4
USB	USB indicator when upgrading the firmware.

Section3 Wiring diagram for lasers

CONTENTS:

- Wiring glass CO2 laser
- Wiring RF CO2 laser
- Wiring of FIBER laser
- Wiring of UV laser
- Wiring of YAG laser

3.1 Glass CO2 laser

Glass tube CO2 laser has 2 control inputs such as laser gate and laser power. Laser power is controlled by analog input. The scale of the analog input is from 0V to 5V. Picture 3.1 is the diagram for LCM connecting with glass tube CO2 laser.

3.2 RF CO2 laser

RF CO2 laser has 2 control inputs such as enable and PWM. ENABLE of laser should be activated first before control the laser. Once the enable is activated, the PWM can control the power of laser and the laser emission. Shown as Picture 3.2.

RF CO2 laser need an enable signal, enable of laser should be activated first at least 100ms before control the laser. The whole process is valid until the end of the work. Of course, it can also be directly connected to 5V.

3.3 Fiber laser control

For a basic fiber laser control, there are 2 control signals. L_AN is used to control the power of fiber laser. PWM_24V is used to control the laser emission. And also there are some auxiliary control signals such as shutter, alarm. User can connect the other IO on LCM with these.

There are the same connections for fiber laser control. One method only controls the laser emission signal. And another connects the PWM on LCM to control the laser emission on laser source. They have different method to control the power of laser source. Shown as the picture 3.3-1 and picture 3.3-2.

PWM control the laser power of laser source and laser emission. L_AN only control the peak pump current for laser source.

	CN3	6	L_AN	LASER POWER	FIBI
LCM	N4	3	PWM_24V	LASER ON	ER LAS
	C	1	GND	GND	SER

RDEncLas400G intelligent laser control module

LON_24V control the laser emission of laser source. L_AN only control the peak pump current for laser source.

	CN3	6	L_AN	LASER POWER	FIBI
LCM	N4	3	PWM_24V	LASER ON	ER LAS
	0	1	GND	GND	SER

Picture 3.3-2

We recommend users to use this connection shown as picture 3.3-2. Especially in PSP mode, the laser on time is short and the laser spots are scattered evenly. Laser power for single laser spot is neglected.

3.4 Fiber laser control

YAG laser should have several control signals that include of laser emission, repeat frequency, pump current and FPS. The connection is shown as picture 3.4.

YAG has a complex control mode. The laser emission signal used to control the laser emission or not. Repeat frequency is used to send the modulate pulse to the laser source. FPS is to kill the first pulses and L_AN is to control the pump current.

		2	LON_5V+	 Laser on	
	N3	4	PWM_5V+	 Repeat freq	YAG
ČM Č	C	5	FPS	FPS	LASE
-		6	L_AN	 POWER	3R
	CN2	6	GND	GND	

3.5 UV laser

For UV laser, the most popular wiring of LCM and laser source are shown as picture 3.5-1,

picture 3.5-2.

UV laser source has only one control input. Laser emission is controlled. PSP mode is much more suitable for the UV lasers.

M	CN3	4	PWM_5V+	PWM	UV L
T(CN2	6	GND	GND	ASER

UV laser source has only one control input. Laser emission is controlled. PSP mode is much more suitable for the UV lasers.

W	CN3	4	PWM_5V+	PWM	UV L
T(CN2	6	GND	GND	ASER

If there are some laser source that is not included in the laser source above,

please contact us. We will give you the solution.

Section 4 Commissions

CONTENTS:

- Preparation for use Parameters configuration software
 - Trouble shooting

(アフ) 寄达科技

4.1 Preparation for use

Correct wiring for use

Make a correct conection among LCM and laser ource and motion controller. If something is not sure, please contact Ruida technology.

Parameters configuration

Before the laser source is connected to LCM, make sure the parameters have been configured correctly. If it is the first time to use LCM, user should build up a correct connection via RS232 between computer and LCM to configure the parameters. Open the software and set the correct parameters to LCM. When power on the LCM, the led indicator will turn on. Check the status of the LED and make sure that the LCM is working normally. Parameters configuration, Please refer to chapter <u>4.2</u> in detail.

Function test

When the parameters have been set, user can test the module with the software. Press "TEST" button to go to test mode. Before testing, please make sure the machine is idle. And check the "RUN" led indicator; twinkle once every 3 seconds, indicate the LCM is in the test mode.

When escape from test mode, please ensure that there is no valid signal input to IN2 interface. Please refer to chapter <u>4.2</u> to get more information for test mode.

Start working

4.2 Parameters configuration software

Parameters configuration software set the parameters to LCM via RS232. users should set the correct parameters to LCM according to the laser source.

Picture 4.2-1 shows main interface of the software. There are 7 items named setting, test, shutter off/on, laser para, power para, motion para, Load to file and load from file. In the "setting" item, language and RS232 can be modified.

SETTING

Picture 4.2-1 Click the "SETTING", and then pop up the dialog. User can change the language. Chinese is default. In the COM configuration, port number can be changed according different hardware. Click "OPEN", COM port is enabled. In the open status, user can click "CLOSE" to close the COM port.

RDEnclas400G		X
	SETTING	1
SETTING	Language	
TEST	English Simplified Chinese	
Shutter OFF		
Laser Para	COM Setting port: COM1 • CLOSE	
Power Para	Firmware version: 1.00.000	
Motion Para		
Export		
Import		

TEST

Before LCM start working, it is necessary to do some test firstly. User can do some hardware test and laser emission by software included in the product. When do testing, user should set the LCM to 'TEST' mode. In the test mode, the running LED will flash for every 3 seconds. The interface of test is shown as picture4.2-2. Press 'Pulse' button can enable laser emission. The function of 'pulse' support pulse mode and CW mode. User can select the work mode of 'pulse'. In the pulse mode, there is a parameter named pulse time should be set to a non-zero value. The value determine the laser emission time. Laser emission power of pulse can be modified also. In the CW mode, if user press the 'pulse 'button, laser emission enabled until the button is released.

RDEncLas400G intelligent laser control module

Picture 4.2-2

Hardware test include of universal input and universal output. The inputs can display the external status of the hardware ports. Select the out ports and there will be logical '1' or '0' to be output. When finished the testing, user can press 'write' to save the parameters to LCM.

RDEnclas400G						X
	TEST					
SETTING	Pulse	•				
TEST	Pulse time(ms):	50	(50~50000)		Pulse	
Shutter OEE	Pulse power(%):	0.3	(0.1~100.0)			
	Hardware test					
Laser Para	O OUTO			INO:	High level	
Power Para	O OUT1			IN1:	High level	
Motion Para	© 0UT2			IN2:	High level	
	© OUT3			IN3:	High level	
	© OUT4			IN4:	High level	
Export						
					Low level of the second sec	utput
Import					High level of	output
			write		ESC	

The parameter's specification is shown in table 4.2-1 Table 4.2-1

Parameter	Description	Data scale (unit)
Bulso control	Select the mode of laser emission. CW mode and	
Puise control	pulse mode	
Pulse time	In pulse mode, the time of laser emission	50—50000(ms)
Pulse power	Laser power of laser emission	0.1—100.0(%)
pulse	Enable or disable laser emission	_
HW test	Universal input and output test	_

Before going to TEST mode, please ensure the machine is idle. When escape from the TEST mode, please ensure there is no valid signal in the IN2 port. Otherwise there may cause a mistake to laser emission. Before any testing, protection glass should be wear firstly.

Shutter ON/OFF

There are some auxiliary control signals such as shutter. OUT0 interface gives laser shutter control signals or enable signal to laser. User can control through the IN0 interface or through the software.

Laser Para

Laser parameters define the function of LCM according to the laser source. There are laser type and universal parameters. Different laser source has different parameters.

Picture 4.2-1

Click the "Laser Para", and then pop up the laser parameters setting dialog. Universal parameters include of active level of laser emission of laser source, laser on delay and laser off delay. Laser type includes of CO2 FIBER, RF CO2, YAG and UV lasers. There are different parameters according to different laser source.

Enclas400G				
	Laser Para			
	General parameters			
SETTING				
	Input active level: High	 LON active 	level: High 🔻	PWM active level: High 🔹
TEST				
	Laser on delay(ms):	0.00 Laser off delay	(ms): 0.00	
Shutter OFF				
	Laser type			
			0 51050	0.via 0.ini
Laser Para	Tube glass	CO2 © RF CO2 lase	r 🖤 FIBER	© YAG © UV
	Laser freq(kHz):	5.0	Pump current	(%): 90.0
Power Para				
	Standby freq(kHz):	10.0	Standby powe	r(%): 10.0
Motion Para				
	FPS delay(ms):	0.000	FPS width	(ms): 1.000
	Laser type	Param	eters	Signal
	Tube glass CO2			LON LAN
	RF CO2 laser	Laser freq Standby f	req and power	LON V PWM V Standby PWM
Export	FIBER laser	Pump current Laser freq		LON V PWM V L_AN
	YAG laser	Laser frequency , FPS delay , FPS width		LON V PWM V FPS
Import	UV laser	Laser frequency		LON V PWM

The parameter's specification is shown in table 4.2-2

Parameter	Description	Data scale(unit)
Laser control level	The active level for LCM to work. It is from the motion controllers to LCM. The level can be high or low.	—
LON signal level	The active level for laser emission. It is different according to different laser source. This parameter will influence the LON port output.	—
PWM active level	The active level for PWM signal.	—
Laser on delay	Delay for laser starting emission	0.00—100.00 (ms)
Laser off delay	Delay laser off	0.00—100.00 (ms)
Laser type	The type of laser source	—
Laser freq	Frequency of PWM	1.0—300.0(KHz)
Pump current	For fiber laser. Control the pump current to laser source. Analog output by L_AN port. 0~10V or 0~5V can be selected by changing the status of the encoder switch	0.1—100.0 (%)
Standby freq	For RF CO2 laser. The frequency of the standby PWM	1.0—300.0(KHz)
Standby power	For RF CO2 laser. The width of the standby PWM	0.1—100.0 (%)

Table 4.2-2

RDEncLas400G intelligent laser control module

EBS dolay	For YAG laser.	Parameters	for f	first pulses	-30.000—30.000(ms
rrs ueldy	killer)
FPS width	For YAG laser. killer	Parameters	for f	first pulses	0.000-50.000(ms)

LCM support several kinds of laser source. According to the laser source, the parameters should be set correctly. Only correct parameters can ensure the correct signal to laser source. Table 4.2-3 is shown the parameters for laser source.

2-3
2-

Laser type	Parameters	Signals
CO2 glass	Laser on, laser power	LON, L_AN
RF CO2 laser	Laser freq, standby frequency, standby width	LON, PWM, standby PWM
Fiber laser	Pump current, frequency	LON, PWM, L_AN
YAG laser	Frequency, FPS delay, FPS width	LON, PWM, FPS
UV laser	Laser freq	LON, PWM

Power Para

Laser power control include of the laser control mode and the laser power control mode. In principle, we have PSP, PSV and PSS mode to control laser emission and the power of laser. Specialy for laser power control, according to the non-linear relationship between the given power and the actual power, LCM have a laser power table for users to define their own powe-speed curve ingorder to get a better cutting result.

Picture 4.2-3

The first item is the laser work mode. It is very important. Different laser mode should be focus on different cutting task. There are PSP,PSV, PSS mode.

There are 10 sample data for build up the power-speed curve.

PSP, PSV and PSS mode should focus on different applications. For some CW laser such as tube glass CO2 laser. PSV mode may be suitable. But if the laser is pulse laser, PSP mode can get a better cutting result. So the laser mode is up to the laser type.

Table 4.3-4 shows the parameter's specification.

Parameter	Description	Data scale(uint)
Laser mode	Laser control mode during motion	PSS,PSV,PSP
PSP length	In PSP, the length of laser emission during motion	0.01—50.00(mm)
PSP gap	In PSP, the gap between 2 laser line spot	0.01—50.00(mm)
Pierce mode	Support CW mode and Pulse mode	—
Max. speed	Referenced speed for P-V table	0.1—1000.0(mm/s)
Max. power	Referenced power for P-V table	0.1—100.0(%)
Pierce power	Laser power for piercing	0.1—100.0(%)
Pierce on time	In Pulse pierce mode, time of each laser emission	
Diorco off time	In Pulse pierce mode, the time interval between	
Pierce on time	two times of laser emission	
P.V.tablo	For PSV, PSP laser mode. The relationship	0.1-100.0/%)
	between the speed and the laser power.	0.1—100.0(%)

Table 4.2-4

P-V table is valid in PSP and PSV mode. The speed should increase from low to high and the laser parameters should also increase from low to high. No decreasing progressively is allowed.

The function of 'Pierce' support pulse mode and CW mode. User can select the work mode of 'Pierce'. In the pulse mode, there is 2 parameters named should be set. The value determines the laser emission time and delay time. In the CW mode, if pierce signal is active, laser emission enabled until the pierce signal is inactive.

Parameters Input active level: High	IN2:	
Pierce mode: pulse mode	IN3:	
Pierce on time: Ton Laser emis	sion:	
Pierce off time: Toff		Ton Toff

LCM has 3 laser control modes. They are static laser power mode (PSS mode), power following with speed (PSV mode) and laser synchronized with pulse mode (PSP mode).

In PSS mode, the laser power will not be changed whatever the speed is.

During the cutting process, laser power is Max.power. the speed of the two sides in the cutting is slow, the middle speed is fast, so the middle energy density is small, the cutting trace is weak, the energy density on both sides is large, and the cutting marks are deep.

In the PSV mode, LCM will regulate the laser power in real time The laser power will be

controlled based on the P-V table.

During the cutting LCM will regulate the laser power according to the changes of the motion speed. When the speed is smaller that the minimum speed in the table, the laser power will output the minimum power. When the speed is bigger that the maximum speed in the table, the laser power will output the maximum value.

In PSP mode, LCM will control the laser length and gap according to the motion speed.

Whatever the speed is, the length and the gap is the same. This can ensure the laser spots are well distributed along the motion path.

The control principle of PSP is shown as the picture 4.2-4.

Picture 4.2-4.

Principle of PSP. The distance of laser on and the distance of laser off are controlled by the parameters. This function can get a well distributed laser spot along the cutting path.

Picture 4.2-4

When using the PSV or PSP mode to configure the P-V table, Please follow the steps:

Test reference value

To set laser mode as PSS, the motion controller with the maximum speed of V_{max} , and LCM with the maximum power of P_{max} . Try to cut when finished, and then check the cutting effect. If cutting power is too small then increase the P_{max} and try again. If cutting power is too large then decrease P_{max} and try again until to meet your needs. Record P_{max} and V_{max} value.

Test sample data

Based on the maximum speed of V_{max}, to set the speed of motion controller V1 as V_{max} * X₁% $(0.1 \le X \le 100.0)$. To set the maximum power, the maximum power P1 of LCM is P_{max}*Y₁% $(0.1 \le Y \le 100.0)$. Try to cut when finished, and then check the cutting effect. If cutting power is too small then increase the Y₁ and try again. If cutting power is too large then decrease Y₁ and try again until to meet your needs. Recording speed percentage X₁ corresponding to the percentage of power Y₁. Repeat the operation, to increase the X and test the sample data until 10 sets of sample data done. The data must include the maximum data that can be achieved during the cutting process.

Fill in the data

Make sure that the intelligent laser control module in the PSV or PSP.Fill in the 10 sets of sample data in the P-V table.

Remarks:

- 1. When setting V_{max} and P_{max} , users can increase the value in a certain range to prevent the actual movement speed exceeds to the maximum speed, otherwise the cutting effect may be not satisfactory.
 - 2. When testting the sample data, users can increase the low-speed measurement of sample density to get better cutting.
 - 3. If user would like to change materials or material thickness, the maximum power P_{max} and fine-tuning the P-V table can be adjusted, if the cutting is not good, user need to remeasure the parameters

4. If the motion speed be changed in a large value, users need to remeasure the parameters.

Motion Para

RDEncLas400G intelligent laser control module

Motion parameters include of the signal type of speed and position feedback. There are 2 feedback signals that are used in LCM. One is the pulse of motor position control. Another is the quadrate feedback signals from rotary encoder or linear encoder. the resolution of the pulse or the encoder should be set. If the feedback is the motor position control pulse, then the PPR and the lead screw pitch should be configured. If the feedback of LCM is rotary encoder, the resolution of encoder and lead screw pitch should be configured. The parameters are shown as picture 4.2-5.

Picture 4.2-5.

The LCM support 3 axes pulse or encoder signal feedback. That means totally support the feedback of 3 axes interpolation motion control system.

LCM will calculate the composition velocity based on the other axis.

	Motion Para			
1	Axis 1			
SETTING		Freeback: Encoder	Cycle pulse number(PPR):	3000
TEST			Pitch(mm):	2.00
aser Para	Axis 2			
		Freeback: Encoder 💌	Resolution(PPR):	3000
ower Para			Pitch(mm):	2.00
Notion Para				
	Axis 3	Freeback: Encoder 💌	Resolution(PPR):	3000
ad to file			Pitch(mm):	2.00
ad from file				
			write	

The parameters of motion control are shown as table 4.2-5

|--|

Parameter	Description	Data scale
feedback	Feedback support control pulse and encoder	
resolution	Resolution of encoder or the pulse per round of a motor.	1000—50000 (PPR)
pitch	The distance when the motor rotate one round	0.0—100.00 (mm)

Export

Save setting parameters to files, please do not change the format of the file.

Import

Read data from a file.

4.3 Trouble shooting

Please refer to table 4.2-6

Fault	Reason	Solution	
Please open COM firstly	RS232 do not connect to computer or the wiring failed	Check the cable and the RS232 interface. Go to 'setting' \rightarrow 'RS232 setting' \rightarrow open	
Failed to	Port selection error	Change the port selection and open again	
open COM	COM port is occupied	Change the port or close the software of taking up the COM port	
	Wrong wiring	Check the wire cable	
Write	Communication failed	Check the cable and write again	
failed	BPS for RS232 setting error	Set the BPS for RS232 to 115200	
	LCM disable the writing parameter function in work mode	Check the status of LCM	
Read	Wrong wiring	Check the wire cable	
parameters failed	BPS for RS232 setting error	Set the BPS for RS232 to 115200	
Enter "TEST" failed	RS232 do not connect to computer or the wiring failed	Check the cable and the RS232 interface.	
	LCM disable the Enter "TEST" mode function in work mode	Check the status of LCM	
	Wrong wiring	Check the cable. In test mode, check the laser control function is ok or not.	
Laser emission failed	Wrong parameters	Check the parameters, In test mode, check the laser control function is ok or not.	
	Alarm happened	Check the alarm type and clear the alarm	
	No laser control input or port IN2 failed.	In test mode, check the universal input and output control function is ok or not.	
Laser control	Active level of laser control signal	Modify the parameter	
error	error		
laser power	Unsuitable parameters	set correct laser parameters and power parameters.	
	LCM internal error	Power on again or contact Ruida	
Alarm	Extern alarm input	Check the alarm and clear it	

Finished the parameters configuration and function test, LCM can work normally. PSP and PSV mode can be applied to laser cutting to get a perfect result. Thank you for your selection of our production!

All the copyright of this manual is owned by Ruida technology. Any person or company can not copy upload and send the manual without Ruida's permission.

Content will be revised or modified. We will not send message to every users.

If there are any question or suggestion about our products and manuals, please tells us.

Tel: (086)0755-26066687

Fax: (086)0755-26982287

Adress : 2th floor,Technology Building,NO.,1057 Nanhai Avenue,Nanshan district, Shenzhen, Guangdong , China.

Website: www.rd-acs.com