7

Frame Grabber SDK (Windows-C)

Developer Guide

Frame Grabber SDK (Windows-C) Developer Guide

Legal Information

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE DOCUMENT IS PROVIDED "AS IS"
AND "WITH ALL FAULTS AND ERRORS". OUR COMPANY MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. IN NO EVENT
WILL OUR COMPANY BE LIABLE FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES, INCLUDING, AMONG OTHERS, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION OR LOSS OF DATA, CORRUPTION OF SYSTEMS, OR LOSS OF DOCUMENTATION,
WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, IN
CONNECTION WITH THE USE OF THE DOCUMENT, EVEN IF OUR COMPANY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES OR LOSS.

Frame Grabber SDK (Windows-C) Developer Guide

Contents

Chapter T OVEIVIEW ... erec e e e e e e e e e e e e e mm e e eeemmaseeemmsssseemmassseeannsssseennnssseennnsssernmnnsneennnn 1
T T INMEPOAUCTION ...ttt ettt ettt et e se et seeseese s et et et eneeneeneenes 1
1.2 Development ENVIFONMENT.............c.ooooiiiiiiiiiiiee ettt e 1
T.3UPAAt@ HISTOTY ..ottt ettt et ettt e et seeaeenn s 1
Chapter 2 BasiC PrOCESS......coiiieiiiiiiiiieccc e e e e e e e e e e e s e e e e emm e s e e e e e e s mmmnsss e s e e eennnmansssaeeeeennnnnnn 3
Chapter 3 APl RefEr@NCe...........o e et e e e e ceee e e e e e e e e mm e e e e e e e e e e mmman s aeeeeeennmmnnsnsaaeeeeeennnnnn 5
3.TVersion INfOrmMationccoouooiiiiiiiiieceee ettt et ne e 5
3.1.T MV_FG_GEetSDKVEISION.........c.ccuoiuiiiiiiiieieieeee ettt st ne s ene e 5
B.2Frame Grabber................oooooiiiiiiieee et ettt et b et ns s enaenes 5
3.2.1 MV_FG_UpdatelnterfaceListc.ocoooiiiiiiiiicccceceee e 5
3.2.2 MV_FG_ReleaseTLayerREeSOUICEcccooueieiiiiiiiesieeeteee et 6
3.2.3MV_FG_GetNUMINTEIfaCeSc.ooiiiieiecee e 6
3.2.4 MV_FG_GetInterfaceInfocccooiiiiiieieececeeee e 7
3.2. 5 MV_FG_OPenInterfacecc.ooiouiiiiiiicieieceeeeeee ettt ettt 7
3.2.6 MV_FG_OPenInterfac@EXcccooeuiiiiiiieieieiieieeteetesteeee ettt 7
3.2.7 MV_FG_OpenInterfaceByIDcccooioiiiiiiieicieeeee ettt 8
3.2.8 MV_FG_CIOSEINTEITACEoouoiiiiiiiieieee ettt 9
BLBDBVICE ...ttt b et a st st he e a e e R e b e s et nt e st en e Rt eaeeseebesententeneeneenens 9
3.3. 1T MV_FG_UPdateDeVICELIStooeiieieeeeeeeeeee e 9
3.3.2 MV_FG_GEtNUMDEVICES...........c.ocuiiiiiiiiieieiieietete ettt st ne s enas 10
3.3.3 MV_FG_GetDeVICEINFOc.ocoeuiieiiieieeie e 10
3.3 A MV_FG_OPENDEVICE...........ceoieeieeieeeeeeteee ettt ettt ettt te et et eve e nas 11
3.3.5 MV_FG_OPenDeviceBYIDc..ccooiiiiiieiieieie ettt sre e 11
3.3.6 MV_FG_CIOSEDEVICEcoeouiiiiiiiiiieeeeee ettt ettt ne s enas 12

i SIF@AMN. ...ttt ettt b e h e sttt e b e e b e bt sttt et beeaees 12
3.4.T MV_FG_GetNUMSTI@AMSootiiiiiiii ettt ettt e be e 12
3.4.2 MV_FG_GetPayloadSizec.occoeiiiieieicee ettt 12
3.4 3MV_FG_OPENSTI@AM.........ooiiiiiiiiicieeee ettt ettt e vt e e s b e e e bee e saeessveeenneenes 13
3.4.4 MV_FG_CIOSE@STr@aMcoouiiiiiiiiiiieieieeee ettt sttt eneenes 13
3.4.5 MV_FG_StartACqUISItIONc.ocooiiiiiiiiicecce et 14
3.4.6 MV_FG_STOPACQUISITIONovoiiiiiiiic ettt enes 14
3.4.7TMV_FG_GetFrameBUFfercocoooiiiieiiieec et 14

Frame Grabber SDK (Windows-C) Developer Guide

3.4.8 MV_FG_RegisterFrameCallBackccooviiiiiiiiiciiiiceeee e 15
3.4.9 MV_FG_ReleaseFrameBUfferccocooviieiiiiiiiiecce s 16
3.4.T0 MV_FG_GetImageBuUffer.................cccooiiiiiiiieiie et 16
BB BUFFEE ...ttt ettt et bt s bt ns et reereens 17
3.5. T MV_FG_SetBufferNUM...............oooiiiiiieece e 17
3.5.2 MV_FG_GetBufferChunkData....................cccoeiiiiiiiiiiieeceee e 18
3.5.3 MV_FG_ANNOUNCEBUFFErcooiiiiiii s 19
3.5.4 MV_FG_REVOKEBUFTEc.ocootiiiiiiiieiccee et 19
3.5.5 MV_FG_FIUSRQUEUE............c.oomiiiiiiiiieeeee ettt enes 20
3.5.6 MV_FG_GetBUFferInfo....................coouiiiiiicecceeeee s 21
3.5. 7 MV_FG_QUEUEBUFETc.oouiiiiiiiiiiieeee ettt 21
3.6 IMAGE PrOCESSINGocuoiiiiiiiiieee ettt sttt s e se e bbbttt ne e enes 21
3.6.1 MV_FG_DisplayOneFrame@..................cocoouieiiiiiiiicieceeeeete ettt ettt 21
3.6.2 MV_FG_SaVEBItMAP...........ccooiuiiiiiieiieiicieeeeeeete ettt ettt ettt et sbesseensesseesaennas 22
B.6.3MV_FG_SAVEUPEYoooiiiiiiiieiee ettt ettt e e et e et e e ebeeesabeesbeeesbaessbaeensaeeassaeennsaenns 22
3.6.4 MV_FG_SaVveTiffTOFIlecocoiiieeee s 23
3.6.5 MV_FG_SavePNngTOFIle..............occooiiiiieeec e 23
3.6.6 MV_FG_ConvertPixXelTYPeooioiieeeee ettt 24
3.6.7 MV_FG_ReconstructiMage................cooiiiiiiiiieee ettt 24
3.6.8 MV_FG_HB_DECOUE.............cooouieiiiiiiiiieieieeee ettt ae ettt ne s enas 25
3.7 Parameters CONIOL...............oouiiiiiiiicee ettt sttt eneenes 25
BT T MV_FG_GEIXMLEFIIE ...ttt 25
3.7.2 MV_FG_GetNodeACCESSMOMEcoooiimiiiiiiiciieeee e 26
3.7.3 MV_FG_GetNodelnterfaceTypPe...........c.ooioiiiiiiieeceeeee e 27
3.7 AMV_FG_GetINtVAlUE ... 27
375 MV_FG_SetINtVAlUEccooiiiiiiiiieeeee et 28
3. 7.6 MV_FG_GetENUMVAIUE.............c.coooiiiiiiiiieeee et 28
3. 7. TMV_FG_SetENUMVAIUEcoouiiiiiiiieccee ettt enas 29
3.7.8 MV_FG_SetENumValueByStringcccccoviiiiiiiiiiciece ettt 29
3. 7.9 MV_FG_GetFloatValue................ccoooiiiiiieieee e 30
3.7.TOMV_FG_SetFIoatValue..................ccooiiiiiei e 30
3.7.11 MV_FG_GEtBOOIVAIUE..............cocooeiiiiiieieieeee ettt 31
3.7 T2 MV_FG_SetBoOIValUe...............ccooiiiiiieeeee et 31
3713 MV_FG_GetStringValUeooooviieieieee ettt 32
3.7.TA MV_FG_SetStringValueccoooiiiiiiiicce ettt 32

Frame Grabber SDK (Windows-C) Developer Guide

3.7.15 MV_FG_SetCommandValUe..................cccooiririiiiiiceieeeeeeee e 33
3.7.16 MV_FG_SetConfigIntValue.................ccoooiiiiiiieee e 33
3.7. 17 MV_FG_FeatureLoad...................oocoriiiiieieieiete et 34
3. 7. T8 MV_FG_FEAtUr@SAVE...........oouiiiieiieeieee ettt ettt ettt et e e te et eeeeseeneeas 34
3.8 Message NOtIficationccooiiiiiiic e 35
3.8.1 MV_FG_RegisterExceptionCallBackcccoocorininiiiiiieeeeee 35
3.8.2 MV_FG_RegisterEventCallBackc.ocooiiiiiiiiiiiiccceeee e 36
Chapter 4 Data Structure and ENUMErationcoooieommeiiiiiiiiieccceeee e e e e e eccm e e e e e e e e ee e e eeees 37
4.7 DAta STFUCTUIE ...ttt ettt et et she e s et et e et e e beesbeesaeesaee 37
4T TMV_CML_DEVICE_INFOoooniiiee ettt e 37
4.1. 2 MV_CMLL_INTERFACE_INFOocooiiiiiiieiieeee et 38
4. T.3MV_CXP_DEVICE_INFO...........ooootiiiieeee ettt e eaee s 38
4.1. 4 MV_CXP_INTERFACE_INFO...........ccoiitiiiiiieiieieeti ettt 39
4. T.5MV_FG_BUFFERL_INFOcoooiiiii e ettt e 39
4. T.6 MV_FG_CCM_INFO.........cocoiiiiiieeeeee ettt ae e s s s s 40
4.1.7 MV_FG_CHUNK_DATA_INFOccooitiiiiiieietietteteete ettt sttt 41
4. 1.8 MV_FG_CONVERT_PIXEL_INFOcccooiiiiiiee et e 41
4. T 9MV_FG_DEVICE_INFOcoooiiiiiiiiieeeeeeett ettt ettt 42
4.1 TOMV_FG_ENUMVALUE.oooiiiiieieeeeeee ettt sttt 42
4T TTMV_FG_EVENT_INFO ..ottt ettt 43
4.1. T2 MV_FG_FLOATVALUEcoooiiiiiieeeeeet ettt sttt 43
4. 1. 13 MV_FG_FRAME_SPEC_INFOcoeoiiiiieiieiieiieieeiesiee ettt 43
4.1.TA MV_FG_GAMMALINFO.........coiitiiiiieieieeeet ettt sttt ene e 44
4.1.15 MV_FG_HB_DECODE_PARAMc.ccooiiiiiiieeeee ettt 45
4.1.16 MV_FG_INPUT_IMAGE_INFOooiiiiiiee ettt e 45
4.1.17 MV_FG_DISPLAY_FRAME_INFOccccoeiiiitiitiiiesiesieeeeeee et 45
4. T 18 MV_FG_INTERFACE_INFO ...ttt et e es 46
AT TOMV_FG_INTVALUE ...ttt ettt ettt e et e e s ve e ereeesaveeenneeas 46
4.1.20 MV_FG_OUTPUT_IMAGE_INFOcoiiiiiiiiieeeeeee e 47
4.1.21 MV_FG_RECONSTRUCTL_INFOcccoiiiiiiiiee et 47
4.1.22 MV_FG_SAVE_BITMAP_INFO ..ottt s 47
4. 1. 23 MV_FG_SAVE_JPEG_INFO ..ottt e e s 48
4.1.24 MV_FG_SAVE_PNG_TO_FILE_INFOcoooiiiiiiie et 48
4.1.25 MV_FG_SAVE_TIFF_TO_FILE_INFO..............coiiiiiiitie ettt e 49
4.1.26 MV_FG_STRINGVALUEc.ociiiitiiiiiieiee ettt 49

Frame Grabber SDK (Windows-C) Developer Guide

4.1.27 MV_GEV_DEVICE_INFO............ccootiiiieieieeeeete ettt ettt 49

4.1.28 MV_GEV_INTERFACE_INFO...........ccoooiiiiiieee et 50

4.2 ENUMEIARIONoouiiiiiiiieice ettt ettt ettt et et et et e st e st e st e s e es e e s e e s e s e s e e eneeneeneeneene 51
4.2.1 MV_FG_BUFFER_QUEUE_TYPE...........cootiiiiiieeeeeee ettt 51

4.2 2 MV_FG_CFA_METHODocoiiiiieeeeeeete ettt 51
4.2.3MV_FG_CONFIG_CIMD..........ccooiiitiiiiieeee et ettt et e e te e v e e s aveeearee s 52

4.2 4 MV_FG_EXCEPTION_TYPEooiieeeeeeetete ettt et 52
4.2.5MV_FG_GAMMALTYPE ettt et e tee s ve e eaee s 56

4.2.6 MV_FG_NODE_ACCESS_MODEcccoooiiiiiiiiieeeseeeee et 57

4.2.7T MV_FG_NODE_INTERFACE_TYPEoooiieeeeeee e 57
4.2.8MV_FG_PIXEL_TYPEoo ittt ettt sttt ne s s 58

4.2.9 MV_FG_RECONSTRUCT_MODEc.oooiiiiiiee et e 60

4.2.10 MV_FG_RESOLUTION_UNITccoiiiiiiiieieiett ettt 61

Chapter 5 Macro DefinitioN........ ... e e nn s s s nnnnnnnnnnnnn 62
Appendix A. SAmMPle Code............ oo cceee e e e e e e e e e e e e e e e e nnnnaa—aeeeeeennnnnnnaaaeeeeeennnnnn 65
A.1 Acquire Images with Callback FUNCLIONocooiiii e, 65

A.2 Acquire Images with Internal Bufferscocoooiiiii e 75

A.3 Acquire Images with User Registering Bufferscccooooeiioiiiiciiiccceee e, 85

A.4 Convert Pixel FOrMAt..............c.oooiiiiiieee ettt 95
A5Gt ChHUNK DATA..........ocuiiiiiie ettt ettt ae s s e eneeneeneenas 107

A.6 Load Dynamic LINK LIBFarycccooiiiiiiiiiiiicieeeeee ettt 117

AT RECEIVEEVENTES ...ttt ettt et s ae b e s et eneeneeneenas 129
Vo]0 =1 T [t = 0 = o) T Yo [N 140

Frame Grabber SDK (Windows-C) Developer Guide

Chapter 1 Overview

The Frame Grabber SDK is a software development kit, which provides unified APIs for the access and
control of frame grabbers. It simplifies the API calling process, and supports operations of multiple
types of frame grabbers at the same time.

1.1 Introduction

This manual mainly introduces the Frame Grabber SDK based on C language, which provides several
APIs for controlling frame grabbers, cameras, and buffers, acquiring images, configuring device
parameters, and processing images.

EE]Note

Now the supported frame grabber types are: GigE, CoaXPress, and Camera Link.

1.2 Development Environment

The development environment of Frame Grabber SDK is shown in the table below.

Frame Grabber Type Item Required
Hardware PCle Gen2x4 bus
Gige Software Microsoft® Windows 7 (32/64-bit)/Windows 10
(32/64-bit)
Hardware PCle Gen2x8 bus
CoaXPress Software Microsoft® Windows 7 (32/64-bit)/Windows 10
(32/64-bit)
Hardware PCle Gen2x4 bus
Camera Link Software Microsoft® Windows 7 (32/64-bit)/Windows 10
(32/64-bit)

1.3 Update History

The update history shows the summary of changes in Frame Grabber SDK with different versions.

Summary of Changes in Version 2.1.0_10/2022

Version Content

1. Added an API for opening a frame grabber according to the frame

Frame Grabber SDK (Windows-C) Developer Guide

Version

Content

Version 2.1.0_10/2022

grabber ID and specifying its access mode: MV_FG_OpeninterfaceByID.

2. Added an API for opening a device according to the device ID:
MV_FG_OpenDeviceByID.

3. Added an API for saving the TIFF image: MV_FG_SaveTiffToFile.

4. Added an API for saving the PNG image: MV_FG_SavePngToFile.

5. Added an API for decoding the lossless compressed stream:
MV_FG_HB Decode.

6. Extended the enumeration about exception types:
MV_FG_EXCEPTION_TYPE

7. Added the sample code for event receiving: Receive Events.

Summary of Changes in Version 2.0.0_05/2022

New document.

Frame Grabber SDK (Windows-C) Developer Guide

Chapter 2 Basic Process

This chapter mainly introduces the API calling flow of basic process, including the frame grabber
operation, device operation, and image acquisition.
In the figure of API calling flow, APIs in the white area are related to frame grabbers, APIs in the blue

area are related to devices, APIls in orange area are related to stream operations.

Enumerate frame grabbers
MV_FG_Updatelnterfacelist
MV_FG_GetNumlnterfaces

.

Open the frame grabber
MV_FG_GetInterfacelnfo
MV_FG_Openinterface

Frame Grabber Related

Device Related

Stream Related

Enumerate devices
MV_FG_UpdateDevicelist
MV_FG_GetNumDevices

v

Open the device
MV_FG_GetDevicelnfo
MV_FG_OpenDevice

P

Enable the stream channel
MV_FG_GetNumStreams
MV_FG_OpenStream

v

Set the number of SDK internal buffers
MV_FG_SetBufferNum

Set parameters of frame Set device parameters | Acquire images directly or in callback
grabbers : function ;
. . Stream related operations Stop acquiring images
Device related operations MV_FG_StopAcquisition

v

Close the frame grabber
MV_FG_Closelnterface

End

Image Acquisition

Close the device
MV_FG_CloseDevice

v

Disable the stream channel
MV_FG_CloseStream

Figure 2-1 API Calling Flow of Basic Process

Two methods of image acquisition are provided: acquire images directly or acquire images in the

callback function.
e Acquire images directly.

e Start streaming: MV_FG_StartAcquisition.
e Get the image buffer information: MV_FG_GetFrameBuffer.
e Release the image buffer: MV_FG_ReleaseFrameBuffer.
e Acquire images in the callback function.
e Register a callback function for receiving frame buffer information:
MV_FG_RegisterFrameCallBack.
e Start streaming: MV_FG_StartAcquisition.

Frame Grabber SDK (Windows-C) Developer Guide

@Note

e Above two methods of image acquisition cannot be used at the same time.

e In callback functions, time-consuming operations and thread locks are not recommended, which may
cause blocking.

e The image data in the image buffer structure is a buffer pointer, it is recommended to copy the data
of callback function and use it in another thread.

Frame Grabber SDK (Windows-C) Developer Guide

Chapter 3 API Reference

3.1 Version Information

API for getting the SDK version information.

3.1.1 MV_FG_GetSDKVersion

Get the SDK version information.

API Definition
unsigned char* MV_FG_GetSDKVersion();

Return Value
Return the SDK version information in a string.

Remarks
Format: "Version number + Type + Compile time".

3.2 Frame Grabber

APIs for enumerating frame grabbers, acquiring relevant information, enabling/disabling frame
grabbers, and so on.

3.2.1 MV_FG_UpdateinterfaceList

Update the frame grabber list.

API Definition

int MV_FG_UpdatelnterfaceList(
unsigned int nTLayerType,

bool8_t *pbChanged
);
Parameters
nTLayerType
[IN] Frame grabber type. See Frame Grabber Type for details.
pbChanged

[OUT] Whether the frame grabber list is updated.

Frame Grabber SDK (Windows-C) Developer Guide

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

This API must be called before any frame grabber operations are performed. The internal list of frame
grabbers will only be updated when this APl is called.

3.2.2 MV_FG_ReleaseTLayerResource
Release the frame grabber resource of the specified type.

API Definition

int MV_FG_ReleaseTLayerResource(
unsigned int nTLayerType

)i
Parameters

nTLayerType
[IN] Frame grabber type. See Frame Grabber Type for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

e Before releasing the library MvFGControl.dll, you need to call this API to release all frame grabbers
resources.

o All frame grabbers of the specified type should be disabled before calling this API.

e After disabling the used GigE Vision frame grabber, you need to call this API to release the CTI
resources of frame grabber. Otherwise, the GigE Vision frame grabber cannot be enabled by another
process since the CTl resources are occupied.

3.2.3 MV_FG_GetNuminterfaces

Get the number of frame grabbers.

API Definition

int MV_FG_GetNumlnterfaces(
unsigned int *pnNumlifaces

)i
Parameters

pnNumilfaces
[OUT] Number of frame grabbers.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

3.2.4 MV_FG_GetInterfacelnfo
Get the frame grabber information by frame grabber index.

API Definition
int MV_FG_GetInterfacelnfo(

unsigned int nindex,
MV_FG_INTERFACE_INFO *pstifacelnfo
)i
Parameters
nindex

[IN] Frame grabber index, which starts from 0.

pstifaceinfo
[OUT] Frame grabber information, see MV_FG_INTERFACE_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.2.5 MV_FG_Openinterface

Open the frame grabber.

API Definition

int MV_FG_OpenlInterface(
unsigned int nindex,
IFHANDLE *phliface

)i
Parameters

nindex

[IN] Frame grabber index, which starts from 0.
phiface

[OUT] Frame grabber handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.2.6 MV_FG_OpenlinterfaceEx

Open the frame grabber and specify its access mode.

API Definition

int MV_FG_OpeninterfaceEx(
unsigned int nindex,

Frame Grabber SDK (Windows-C) Developer Guide

int nAccess,
IFHANDLE *phliface
)i
Parameters
nindex

[IN] Frame grabber index, which starts from 0.

nAccess
[IN] Access mode. See Frame Grabber Access Mode for details.

phiface
[OUT] Frame grabber handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

e There are three types of access modes: MV_FG_ACCESS_UNKNOWN, MV_FG_ACCESS_READONLY,
and MV_FG_ACCESS_CONTROL.

e CoaXPress frame grabbers and Camera Link frame grabbers can only be enabled with the access
mode MV_FG_ACCESS_CONTROL (i.e., with permission to control).

3.2.7 MV_FG_OpeninterfaceByID

Open the frame grabber according to frame grabber ID and specify its access mode.

API Definition

int MV_FG_OpenlnterfaceByID(
char *pcinterfacelD,
int nAccess,
IFHANDLE *phliface

)i
Parameters

pcinterfacelD
[IN] Frame grabber ID.

nAccess
[IN] Access mode. See Frame Grabber Access Mode for details.

phiface
[OUT] Frame grabber handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
e There are three types of access modes: MV_FG_ACCESS_UNKNOWN, MV_FG_ACCESS_READONLY,

Frame Grabber SDK (Windows-C) Developer Guide

and MV_FG_ACCESS_CONTROL.
e CoaXPress frame grabbers and Camera Link frame grabbers can only be enabled with the access
mode MV_FG_ACCESS_CONTROL (i.e., with permission to control).

3.2.8 MV_FG_Closelnterface
Close the frame grabber.

API Definition

int MV_FG_Closelnterface(
IFHANDLE phiface

)i
Parameters

phiface
[IN] Frame grabber handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.3 Device

APIs for enumerating devices, acquiring relevant information, and opening/closing devices.

3.3.1 MV_FG_UpdateDeviceList

Update the device list of a specified frame grabber.

API Definition

int MV_FG_UpdateDevicelList(
IFHANDLE hiface,
bool8_t *pbChanged

)i
Parameters

hiface
[IN] Frame grabber handle.

pbChanged
[OUT] Whether the device list is updated.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
The internal list of devices will only be updated when this APl is called.

Frame Grabber SDK (Windows-C) Developer Guide

3.3.2 MV_FG_GetNumbDevices
Get the number of devices of a specified frame grabber.

API Definition
int MV_FG_GetNumbDevices(

IFHANDLE hiface,
unsigned int *pnNumDevices
);
Parameters
hiface

[IN] Frame grabber handle.
pnNumbDevices
[OUT] Number of devices.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.3.3 MV_FG_GetDevicelnfo

Get the device information.

API Definition

int MV_FG_GetDevicelnfo(
IFHANDLE hiface,
unsigned int nindex,
MV_FG_DEVICE_INFO *pstDevinfo

)i
Parameters
hiface
[IN] Frame grabber handle.

nindex
[IN] Device index, which starts from 0.

pstDevinfo
[OUT] Device information, see MV_FG_DEVICE_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

10

Frame Grabber SDK (Windows-C) Developer Guide

3.3.4 MV_FG_OpenDevice
Open the device according to index.

API Definition
int MV_FG_OpenDevice(

IFHANDLE hiface,
unsigned int nindex,
DEVHANDLE* phDevice

)i

Parameters

hiface

[IN] Frame grabber handle.

nindex
[IN] Device index, which starts from 0.

phDevice
[OUT] Device handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.3.5 MV_FG_OpenDeviceByID

Open the device according to device ID.

API Definition
int MV_FG_OpenDevice(

IFHANDLE hiface,
char *pcDevicelD,
DEVHANDLE *phDevice

)i

Parameters

hiface

[IN] Frame grabber handle.

pcDevicelD
[IN] Device ID.

phDevice
[OUT] Device handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

11

Frame Grabber SDK (Windows-C) Developer Guide

3.3.6 MV_FG_CloseDevice
Close the device module corresponding to the specified device handle.

API Definition

int MV_FG_CloseDevice(
DEVHANDLE* hDevice

)i
Parameters

hDevice
[IN] Device handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4 Stream

APIs for acquiring stream information, enabling/disabling stream channels, and so on.

3.4.1 MV_FG_GetNumStreams

Get the number of stream channels.

API Definition
int MV_FG_GetNumStreams(

DEVHANDLE hDevice,
unsigned int *pnNumStreams
i
Parameters
hDevice

[IN] Device handle.

pnNumStreams
[OUT] Number of stream channels.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.2 MV_FG_GetPayloadSize

Get the image size of the stream channel.

API Definition
int MV_FG_GetPayloadSize(

12

Frame Grabber SDK (Windows-C) Developer Guide

STREAMHANDLE hStream,
unsigned int *pnPayloadSize
)i
Parameters
hStream

[IN] Stream channel handle.
pnPayloadSize
[OUT] Image size of the stream channel.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

The image size of the stream channel needs to be reacquired after the image-related parameters of the
camera are changed, such as width, height, and pixel format.

3.4.3 MV_FG_OpenStream

Open the stream channel.

API Definition
int MV_FG_OpenStream(

DEVHANDLE hDevice,
unsigned int nindex,
STREAMHANDLE *phStream

)i

Parameters

hDevice

[IN] Device handle.

nindex
[IN] Stream channel index.

phStream
[OUT] Stream channel handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.4 MV_FG_CloseStream

Close the stream channel.

API Definition
int MV_FG_CloseStream(

13

Frame Grabber SDK (Windows-C) Developer Guide

STREAMHANDLE hStream
)i

Parameters

hStream
[IN] Stream channel handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.5 MV_FG_StartAcquisition
Start image acquisition.

API Definition

int MV_FG_StartAcquisition(
STREAMHANDLE hStream

)i
Parameters

hStream
[IN] Stream channel handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.6 MV_FG_StopAcquisition
Stop image acquisition.

API Definition

int MV_FG_StopAcquisition(
STREAMHANDLE hStream

)i
Parameters

hStream
[IN] Stream channel handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.7 MV_FG_GetFrameBuffer

Get the buffer information of a frame. This APl is valid only when buffers are managed internally by the

14

Frame Grabber SDK (Windows-C) Developer Guide

SDK.

API Definition
int MV_FG_GetFrameBuffer(

STREAMHANDLE hStream,
MV_FG_BUFFER_INFO *pstBufferinfo,
unsigned int nTimeout

);

Parameters

hStream

[IN] Stream channel handle.

pstBufferinfo
[OUT] Buffer information, see MV_FG_BUFFER_INFO for details.

nTimeout
[IN] Timeout, unit: millisecond.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
The API MV_FG_ReleaseFrameBuffer should be called to release the buffer information.

3.4.8 MV_FG_RegisterFrameCallBack

Register the callback function for frame buffer information. This API is valid only when buffers are
managed internally by the SDK.

API Definition
int MV_FG_RegisterFrameCallBack(

STREAMHANDLE hStream,
MV_FG_FramecCallBack cbFrame,
void *pUser

)i

Parameters

hStream

[IN] Stream channel handle.

cbFrame
[IN] Frame buffer information callback function.
void (__stdcall *MV_FG_FrameCallBack)(
MV_FG_BUFFER_INFO *pstBufferinfo,
void *pUser

)

15

Frame Grabber SDK (Windows-C) Developer Guide

pstBufferinfo
[IN] Frame buffer information, see MV_FG_BUFFER_INFO for details.

pUser
[IN] User-defined data.

pUser
[IN] User-defined data.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

e Time-consuming operations in the callback function will block the access to the subsequent frame
buffer information.

e This APl and the APl MV_FG_GetFrameBuffer are mutually exclusive.

e You need to call this API to register the callback function before calling API MV_FG_StartAcquisition.

3.4.9 MV_FG_ReleaseFrameBuffer

Release the buffer information. This APl is valid only when buffers are requested internally by the SDK.

API Definition
int MV_FG_ReleaseFrameBuffer(

STREAMHANDLE hStream,
MV_FG_BUFFER_INFO *pstBufferinfo
)i
Parameters
hStream

[IN] Stream channel handle.

pstBufferinfo
[IN] Buffer information, see MV_FG_BUFFER_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

This APl and MV_FG_GetFrameBuffer should be used in pair. The image data (pstBufferinfo) obtained
via MV_FG_GetFrameBuffer should be released by this API.

3.4.10 MV_FG_GetimageBuffer

Get the buffer handle of a frame. This API is valid only when buffers are requested and registered to

16

Frame Grabber SDK (Windows-C) Developer Guide

stream channels by the user.

API Definition

int MV_FG_GetimageBuffer(
STREAMHANDLE hStream,
BUFFERHANDLE *phBuffer,
unsigned int nTimeout

)i
Parameters
hStream
[IN] Stream channel handle.

phBuffer
[OUT] Buffer handle.

nTimeout

[IN] Timeout, unit: millisecond.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

By calling the API MV_FG_GetBufferinfo, you can get the buffer information with the acquired buffer
handle.

3.5 Buffer

APIs for managing buffers, acquiring relevant information, and so on.

3.5.1 MV_FG_SetBufferNum
Set the number of internal buffers for the SDK.

API Definition
int MV_FG_SetBufferNum(

STREAMHANDLE hStream,
unsigned int nBufferNum
)i
Parameters
hStream

[IN] Stream channel handle.

nBufferNum
[IN] Number of buffers.

17

Frame Grabber SDK (Windows-C) Developer Guide

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

e The SDK has no internal buffer if this APl is not called or the value of parameter nBufferNum is set to
0. When there is no internal buffer, you need to request and register buffers to stream channels
before starting image acquisition.

e When the parameter nBufferNum is set to a value greater than 0, buffers will the allocated internally
by the SDK and it is not allowed to register buffers to stream channels at this time.

e The number of image buffers should be reasonably allocated.

3.5.2 MV_FG_GetBufferChunkData

Get the chunk data information of a buffer.

API Definition
int MV_FG_GetBufferChunkData(

STREAMHANDLE hStream,
MV_FG_BUFFER_INFO *pstBufferinfo,
unsigned int nindex,
MV_FG_CHUNK_DATA_INFO *pstChunkDatalnfo

)i

Parameters

hStream

[IN] Stream channel handle.

pstBufferinfo

[IN] Buffer information, see MV_FG_BUFFER_INFO for details.
nindex

[IN] Chunk data index.

pstChunkDatalnfo
[OUT] Chunk data information, see MV_FG_CHUNK_DATA_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

After getting the buffer information, this API must be called before calling the APls
MV_FG_ReleaseFrameBuffer and MV_FG_QueueBuffer to get valid information of the chunk data.

18

Frame Grabber SDK (Windows-C) Developer Guide

3.5.3 MV_FG_AnnounceBuffer

Register buffer to the stream channel.

API Definition
int MV_FG_AnnounceBuffer(

STREAMHANDLE hStream,
void *pBuffer,
unsigned int nSize,
void *pPrivate,
BUFFERHANDLE *phBuffer
)i
Parameters
hStream

[IN] Stream channel handle.

pBuffer
[IN] Image buffer address.

nSize

[IN] Image buffer size.
The image buffer size is acquired by calling the API MV_FG_GetPayloadSize. The private information
is user-defined.

pPrivate
[IN] Private information address.

phBuffer
[OUT] Buffer handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This API must be called prior to acquiring images.

3.5.4 MV_FG_RevokeBuffer
Revoke buffer from the stream channel.

API Definition
int MV_FG_RevokeBuffer(

STREAMHANDLE hStream,
BUFFERHANDLE hBuffer,
void **pBuffer,
void **pPrivate

19

Frame Grabber SDK (Windows-C) Developer Guide

Parameters

hStream
[IN] Stream channel handle.

hBuffer
[IN] Buffer handle.

pBuffer
[OUT] Image buffer address.

pPrivate
[OUT] Private information address.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

Only buffers in unused queues can be revoked. You can allocate buffers to unused queues by calling
the APl MV_FG_FlushQueue.

3.5.5 MV_FG_FlushQueue

Refresh the buffer queue.

API Definition
int MV_FG_FlushQueue(

STREAMHANDLE hStream,
MV_FG_BUFFER_QUEUE_TYPE enQueueType
)i
Parameters
hStream

[IN] Stream channel handle.

enQueueType
[IN] Buffer queue type, see MV_FG_BUFFER_QUEUE_TYPE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

The following queue types are not supported during image acquisition:
MV_FG_BUFFER_QUEUE_INPUT_TO_OUTPUT and MV_FG_BUFFER_QUEUE_ALL_DISCARD.

20

Frame Grabber SDK (Windows-C) Developer Guide

3.5.6 MV_FG_GetBufferinfo

Get the buffer information by buffer handle.

API Definition

int MV_FG_GetBufferinfo(
BUFFERHANDLE hBuffer,
MV_FG_BUFFER_INFO *pstBufferinfo

)i
Parameters

hBuffer
[IN] Buffer handle.

pstBufferinfo
[OUT] Buffer information, see MV_FG_BUFFER_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.5.7 MV_FG_QueueBuffer

Insert the buffer back to the input queue.

API Definition

int MV_FG_QueueBuffer(
BUFFERHANDLE hBuffer

)i
Parameters

hBuffer
[IN] Buffer handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6 Image Processing

APIs for displaying a frame of image, saving BMP/JPEG images, converting pixel formats, and so on.

3.6.1 MV_FG_DisplayOneFrame

Display one frame of image.

API Definition
int MV_FG_DisplayOneFrame(

21

Frame Grabber SDK (Windows-C) Developer Guide

IMAGEHANDLE himage,
void *hWnd,
MV_FG_DISPLAY_FRAME_INFO *pstDisplayFramelnfo
)i
Parameters
himage
[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.
hWnd

[IN] Window handle.

pstDisplayFramelnfo
[IN] Image information to be displayed, see MV_FG_DISPLAY_FRAME_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.2 MV_FG_SaveBitmap

Save the BMP image.

API Definition
int MV_FG_SaveBitmap(

IMAGEHANDLE himage,
MV_FG_SAVE_BITMAP_INFO *pstSaveBitmapinfo
)i
Parameters
himage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstSaveBitmaplinfo
[IN][OUT] BMP image information, see MV_FG_SAVE_BITMAP_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.3 MV_FG_SaveJpeg

Save the JPEG image.

API Definition

int MV_FG_SaveJpeg(
IMAGEHANDLE himage,
MV_FG_SAVE_JPEG_INFO *pstSaveJpeginfo

);

22

Frame Grabber SDK (Windows-C) Developer Guide

Parameters
himage
[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstSaveJpeginfo
[IN][OUT] JPEG image information, see MV_FG_SAVE_JPEG_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.4 MV_FG_SaveTiffToFile

Save the TIFF image.

API Definition

int MV_FG_SaveTiffToFile(
IMAGEHANDLE himage,
MV_FG_SAVE_TIFF_TO_FILE_INFO *pstSaveTiffinfo

)i
Parameters
himage
[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.
pstSaveTiffinfo
[IN][OUT] TIFF image information, see MV_FG_SAVE_TIFF_TO_FILE_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.5 MV_FG_SavePngToFile

Save the PNG image.

API Definition

int MV_FG_SavePngToFile(
IMAGEHANDLE himage,
MV_FG_SAVE_PNG_TO_FILE_INFO *pstSavePnginfo

)i
Parameters

himage
[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstSavePnginfo
[IN]J[OUT] PNG image information, see MV_FG_SAVE_PNG_TO_FILE_INFO for details.

23

Frame Grabber SDK (Windows-C) Developer Guide

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.6 MV_FG_ConvertPixelType

Convert the pixel format.

API Definition
int MV_FG_ConvertPixelType(

IMAGEHANDLE himage,
MV_FG_CONVERT_PIXEL_INFO *pstConvertPixellnfo
);
Parameters
himage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstConvertPixellnfo
[IN]J[OUT] Pixel format conversion information, see MV_FG_CONVERT_PIXEL_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.7 MV_FG_Reconstructimage
Reconstruct images.

API Definition
int MV_FG_Reconstructimage(

IMAGEHANDLE himage,
MV_FG_RECONSTRUCT_INFO *pstReconstructinfo
i
Parameters
himage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstReconstructinfo
[IN][OUT] Image reconstruction information, see MV_FG_RECONSTRUCT_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

e Image rotation, image flipping, and image splitting are supported, but the specific precondition is
required.
e The supported pixel formats of image rotation and image flipping are: MV_FG_PIXEL_TYPE_Mono8,

24

Frame Grabber SDK (Windows-C) Developer Guide

MV_FG_PIXEL_TYPE_RGB8_Packed, and MV_FG_PIXEL_TYPE_BGR8_Packed.
e |Image splitting supports all pixel formats.

3.6.8 MV_FG_HB_Decode
Decode the lossless compressed stream.

API Definition
int __stdcall MV_FG_HB_Decode(

IMAGEHANDLE himage,
MV_FG_HB_DECODE_PARAM *pstDecodeParam
);
Parameters
himage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstDecodeParam

[IN][OUT] Structure about lossless decoding parameters. See MV_FG_HB_DECODE_PARAM for
details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

e This APl is used to decode the lossless compressed stream obtained from cameras into raw data.

e This APl also supports parsing the watermark information of real-time image for the current camera.
If the input lossless stream is not from the current camera or not obtained in real time, the
watermark parsing may fail. To parse the watermark information, you should input the handle of
current camera, otherwise, only lossless decoding will be performed if you input the frame grabber
handle or stream handle.

3.7 Parameters Control

APIs for getting XML files of frame grabbers and cameras, getting and setting the device parameters,
and saving and loading the device features.

3.7.1 MV_FG_GetXMLFile

Get the XML file of frame grabbers / devices.

API Definition
int MV_FG_GetXMLFile(

PORTHANDLE hPort,
unsigned char *pData,
unsigned int nDataSize,
unsigned int *pnDatalLen

25

Frame Grabber SDK (Windows-C) Developer Guide

)i
Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

pData
[IN]J[OUT] Address of the buffer in which the XML file is stored.

nDataSize
[IN] Size of the buffer in which the XML file is stored.

pnDatalLen
[OUT] Length of the XML file.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.2 MV_FG_GetNodeAccessMode
Get the access mode of a node.

API Definition
int MV_FG_GetNodeAccessMode(

PORTHANDLE hPort,
const char *strName,
MV_FG_NODE_ACCESS_MODE *penAccessMode
)i
Parameters
hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strName
[IN] Node name.

penAccessMode
[OUT] Access mode of the node, see MV_FG_NODE_ACCESS_MODE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

To get the access mode of the EnumEntry type node, the input value for strName should be in the
format "EnumEntry_NodeName_EnumEntryName". For example, to get the access mode of the node
MV_FG_PIXEL_TYPE_Mono8 of the enumeration MV_FG_PIXEL_TYPE, the strName should be
"EnumEntry_PixelFormat_Mono8".

26

Frame Grabber SDK (Windows-C) Developer Guide

3.7.3 MV_FG_GetNodelnterfaceType
Get the type of a node.

API Definition

int MV_FG_GetNodelnterfaceType(
PORTHANDLE hPort,
const char *strName,
MV_FG_NODE_INTERFACE_TYPE *peninterfaceType

)i
Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strName
[IN] Node name.

peninterfaceType
[OUT] Type of the node, see MV_FG_NODE_INTERFACE_TYPE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.4 MV_FG_GetIntValue

Get the information about an integer type node.

API Definition
int MV_FG_GetIntValue(

PORTHANDLE hPort,
const char *strKey,
MV_FG_INTVALUE *pstintValue
i
Parameters
hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

pstintValue
[OUT] Information about the integer type node, see MV_FG_INTVALUE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

27

Frame Grabber SDK (Windows-C) Developer Guide

3.7.5 MV_FG_SetIntValue

Set the information of an integer type node.

API Definition
int MV_FG_SetIntValue(

PORTHANDLE hPort,
const char *strKey,
int64_t nValue

)i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

nValue
[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.6 MV_FG_GetEnumValue

Get the information about an enumerated type node.

API Definition

int MV_FG_GetEnumValue(
PORTHANDLE hPort,
const char *strKey,
MV_FG_ENUMVALUE *pstEnumValue

)i
Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

pstEnumValue
[OUT] Information about the enumerated type node, see MV_FG_ENUMVALUE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

28

Frame Grabber SDK (Windows-C) Developer Guide

3.7.7 MV_FG_SetEnumValue

Set the information of an enumerated type node.

API Definition
int MV_FG_SetEnumValue(

PORTHANDLE hPort,
const char *strKey,
unsigned int nValue

i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

nValue
[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.8 MV_FG_SetEnumValueByString
Set the information of an enumeration type node by string.

API Definition
int MV_FG_SetEnumValueByString(

PORTHANDLE hPort,
const char *strKey,
const char *strValue

)i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

strValue
[IN] Values (input as strings) to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

29

Frame Grabber SDK (Windows-C) Developer Guide

3.7.9 MV_FG_GetFloatValue

Get the information about a float type node.

API Definition
int MV_FG_GetFloatValue(

PORTHANDLE hPort,
const char *strKey,
MV_FG_FLOATVALUE *pstFloatValue
);
Parameters
hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

pstFloatValue
[OUT] Information about the float type node, see MV_FG_FLOATVALUE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.10 MV_FG_SetFloatValue

Set the information of a float type node.

API Definition
int MV_FG_SetFloatValue(

PORTHANDLE hPort,
const char *strKey,
float fValue

)i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

fValue
[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

30

Frame Grabber SDK (Windows-C) Developer Guide

3.7.11 MV_FG_GetBoolValue

Get the information about a boolean type node.

API Definition
int MV_FG_GetBoolValue(

PORTHANDLE hPort,
const char *strKey,
bool8_t *pbValue

)i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

pstintValue
[OUT] Information about the boolean type node.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.12 MV_FG_SetBoolValue

Set the information of a boolean type node.

API Definition
int MV_FG_SetBoolValue(

PORTHANDLE hPort,
const char *strKey,
bool8_t bValue

)i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

bValue
[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

31

Frame Grabber SDK (Windows-C) Developer Guide

3.7.13 MV_FG_GetStringValue

Get the information about a string type node.

API Definition
int MV_FG_GetStringValue(

PORTHANDLE hPort,
const char *strKey,
MV_FG_STRINGVALUE *pstStringValue
i
Parameters
hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

pstStringValue
[OUT] Information about the string type node, see MV_FG_STRINGVALUE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.14 MV_FG_SetStringValue

Set the information of a string type node.

API Definition
int MV_FG_SetStringValue(

PORTHANDLE hPort,
const char *strKey,
const char *strValue

)i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey
[IN] Node name.

strValue
[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

32

Frame Grabber SDK (Windows-C) Developer Guide

3.7.15 MV_FG_SetCommandValue

Execute the commands of a command type node.

API Definition
int MV_FG_SetCommandValue(

PORTHANDLE hPort,
const char *strKey

);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be only a device.

strKey
[IN] Node name.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This API is supported by Camera Link cameras.

3.7.16 MV_FG_SetConfigIntValue

Set a custom value for an integer type of node.

API Definition
int MV_FG_SetConfigIntValue(

PORTHANDLE hPort,
MV_FG_CONFIG_CMD enConfigCmd,
int64_t nValue

)i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

enConfigCmd
[IN] Configuration command, see MV_FG_CONFIG_CMD for details.

nValue

[IN] Value to be set. Range: [MV_FG_BAUDRATE_9600, MV_FG_BAUDRATE_AUTOMAX], the default
value is MV_FG_BAUDRATE_115200.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

33

Frame Grabber SDK (Windows-C) Developer Guide

3.7.17 MV_FG_FeatureLoad

Import the device features.

API Definition
int MV_FG_FeatureLoad(

PORTHANDLE hPort,
const char *strFileName
)i
Parameters
hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strFileName
[IN] Name of the file in which the device attributes and features are stored (only supports English).

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This APl is not supported by Camera Link cameras.

3.7.18 MV_FG_FeatureSave

Save the device features.

API Definition
int MV_FG_FeatureSave(

PORTHANDLE hPort,
const char *strFileName
)i
Parameters
hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strFileName
[IN] Name of the file in which the device attributes and features will be saved (only supports English).

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This APl is not supported by Camera Link cameras.

34

Frame Grabber SDK (Windows-C) Developer Guide

3.8 Message Notification

APIs for registering the callback function for exceptions and events.

3.8.1 MV_FG_RegisterExceptionCallBack

Register the callback function for exception information.

API Definition
int MV_FG_RegisterExceptionCallBack(

PORTHANDLE hPort,
MV_FG_ExceptionCallBack cbException,
void *pUser

);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be a frame grabber, device,
or stream channel.
cbException

[IN] Exception information callback function.

void (__stdcall *MV_FG_ExceptionCallBack)(
MV_FG_EXCEPTION_TYPE enExceptionType,
void *pUser

)

enExceptionType
[IN] Exception type information, see MV_FG_EXCEPTION_TYPE for details.

pUser
[IN] User-defined data.

pUser
[IN] User-defined data.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

e Processing time-consuming operations in the callback function will block the access to the
subsequent exception information.

e This APl is available for the exception callback of frame grabbers, devices, and stream channels. The
type of registered callback function varies according to the handle type.

35

Frame Grabber SDK (Windows-C) Developer Guide

3.8.2 MV_FG_RegisterEventCallBack

Register the callback function for events.

API Definition
int MV_FG_RegisterEventCallBack(

PORTHANDLE hPort,
const char *strEventName,
MV_FG_EventCallBack cbEvent,
void *pUser

)i

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be a frame grabber, device,
or stream channel.

strEventName
[IN] Event name.

cbEvent

[IN] Events callback function.

void (__stdcall *MV_FG_EventCallBack)(
MV_FG_EVENT_INFO *pstEventinfo,
void *pUser

)

pstEventinfo
[IN] Events information, see MV_FG_EVENT_INFO for details.

pUser
[IN] User-defined data.

pUser
[IN] User-defined data.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

e Processing time-consuming operations in the callback function will block the access to the
subsequent events information.

e This APl is available for the event callback of frame grabbers, devices, and stream channels. The
type of registered callback function varies according to the handle type.Now the frame grabber
offline event is not supported. After upgrading the frame grabber, you need to restart the PC before
use.

36

Frame Grabber SDK (Windows-C) Developer Guide

Chapter 4 Data Structure and Enumeration

4.1 Data Structure

4.1.1 MV_CML_DEVICE_INFO

Structure about Camera Link Device Information

Member Data Type Description
Device vendor name, the length is defined by the
chVendorName unsigned charf(] macro "MV_FG_MAX_DEV_INFO_SIZE" (the value

is 64).

chModelName

unsigned char

Device model name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chManufacturerinfo

unsigned char

Device manufacturer information, the length is
defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

chDeviceVersion

unsigned char

Device version, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chSerialNumber

unsigned char

Device serial number, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chUserDefinedName

unsigned char

User-defined name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chDevicelD

unsigned char

Device ID, the length is defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

nReserved[48]

unsigned int[]

Reserved.

37

Frame Grabber SDK (Windows-C) Developer Guide

4.1.2 MV_CML_INTERFACE_INFO

Structure about Camera Link Frame Grabber Information

Member

Data Type

Description

chinterfacelD

unsigned charf]

Frame grabber ID, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

chDisplayName

unsigned charf]

Displayed name, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

chSerialNumber

unsigned charf(]

Serial number, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

Information about the PCle slot of the frame
grabber. The lower 16 bits are valid bits: bits 0 to 2

nPCIEInfo unsigned int indicate function, bits 3 to 7 indicate device, and bits
8 to 15 indicate bus.
nReserved[64] unsigned int[] Reserved.

4.1.3 MV_CXP_DEVICE_INFO

Structure about CoaXPress Device Information

Member Data Type Description
Device vendor name, the length is defined by the
chVendorName unsigned charf(] macro "MV_FG_MAX_DEV_INFO_SIZE" (the value

is 64).

chModelName

unsigned charf(]

Device model name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chManufacturerinfo

unsigned charf]

Device manufacturer information, the length is
defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

chDeviceVersion

unsigned charf]

Device version, the length is defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

chSerialNumber

unsigned charf]

Device serial number, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chUserDefinedNam
e

unsigned charf]

User-defined name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chDevicelD

unsigned charf]

Device ID, the length is defined by the macro

38

Frame Grabber SDK (Windows-C) Developer Guide

Member

Data Type

Description

"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

nReserved[48]

unsigned int[]

Reserved.

4.1.4 MV_CXP_INTERFACE_INFO

Structure about CoaXPress Frame Grabber Information

Member

Data Type

Description

chinterfacelD

unsigned char(]

Frame grabber ID, the length is defined by the
macro "MV_FG_MAX_IF_INFO_SIZE" (the value is
64).

chDisplayName

unsigned char(]

Displayed name, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

chSerialNumber

unsigned char(]

Serial number, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

nPCIEInfo

unsigned int

Information about the PCle slot of the frame
grabber. The lower 16 bits are valid bits: bits 0 to 2
indicate function, bits 3 to 7 indicate device, and
bits 8 to 15 indicate bus.

nReserved[64]

unsigned int(]

Reserved.

4.1.5 MV_FG_BUFFER_INFO

Structure about Output Frame Buffer Information

Member Data Type Description
pBuffer void* Image buffer address.
nSize unsigned int Size of the image buffer address.
nFilledSize unsigned int Frame length.
pPrivate void* Private data.
nWidth unsigned int Image width.
nHeight unsigned int Image height.
enPixelType MV_FG_PIXEL_TYPE Pixel format.
bNewData bool Whether it is a new image.
bQueued bool Whether it is in the image acquisition queue.

39

Frame Grabber SDK (Windows-C) Developer Guide

Member Data Type Description
bAcquiring bool Whether the image is being acquired.
bincomplete bool Whether the image acquisition is incomplete.
nFramelD int64_t Frame No.
nDevTimeStamp int64_t Device timestamp.
nHostTimeStamp int64_t Host timestamp.
nNumChunks unsigned int Number of chunks.
nChunkPayloadSize unsigned int Size of chunk payloads.
nSecondCount unsigned int Seconds (time scale).
nCycleCount unsigned int Cycle count (time scale).
nCycleOffset unsigned int Cycle offset (time scale).
fGain float Gain.
fExposureTime float Exposure time.
nAverageBrightness unsigned int Average brightness.
nFrameCounter unsigned int Total number of frames.
nTriggerindex unsigned int Trigger count.
ninput unsigned int Input.
nOutput unsigned int Output.
nRed unsigned int Red (white balance).
nGreen unsigned int Green (white balance).
nBlue unsigned int Blue (white balance).
nOffsetX unsigned int ROI x-offset.
nOffsetY unsigned int ROI y-offset.
nChunkWidth unsigned int ROI width.
nChunkHeight unsigned int ROI height.
nReserved[45] unsigned int(] Reserved.

4.1.6 MV_FG_CCM_INFO

Structure about Color Correction Matrix (CCM) Information

Member

Data Type

Description

bCCMEnable

bool32_t

Whether to enable CCM.

Frame Grabber SDK (Windows-C) Developer Guide

Member Data Type Description
Color correction matrix.
nCCMat[9] int[]
Range of value: (-65536, 65536).
: . Quantized coefficient, which is an integral
nCCMScale unsigned int power of 2 and the maximum value is 65536.
nReserved[4] unsigned int(] Reserved.
4.1.7 MV_FG_CHUNK_DATA_INFO
Structure about Chunk Data Information
Member Data Type Description
pChunkData unsigned char* Chunk data.
nChunkID unsigned int Chunk ID.
nChunkLen unsigned int Chunk length.
nReserved[4] unsigned int[] Reserved.
4.1.8 MV_FG_CONVERT_PIXEL_INFO
Structure about Pixel Format Conversion Information
Member Data Type Description

stinputimagelnfo

MV_FG_INPUT_IMAGE_INFO

Input image information.

stOutputimagelnfo

MV_FG_OUTPUT_IMAGE_INFO

Output image information.

enCfaMethod

MV_FG_CFA_METHOD

Interpolation method.

bFilterEnable

bool32_t

Whether smooth interpolation is
enabled.

stGammalinfo

MV_FG_GAMMA_INFO

Gamma information.

Color Correction Matrix (CCM)

stCCMiInfo MV_FG_CCM_INFO information. It is supported by
Windows only.
nReserved[4] unsigned int[] Reserved.

41

Frame Grabber SDK (Windows-C) Developer Guide

4.1.9 MV_FG_DEVICE_INFO

Structure about Device Information

Member Data Type Description
nDevType unsigned int Device type.
nReserved[3] unsigned int[] Reserved.
union {
MV CXP DEVICE INFO Device information. The member to be
StCXPDevInfo: used is determined by nDevType.
MV GEV DEVICE INFO stCXPDevInfo: CoaXPress device
Devinfo stGEVDevInfo; information.
MV CML DEVICE INFO stGEVDevlinfo: GigE Vision device
stCMLDevInfo; information.
unsigned int nReserved[256]: stCMLDevInfo: Camera Link device
9 ! information.
}
4.1.10 MV_FG_ENUMVALUE
Structure about Enumeration Type Value
Member Data Type Description
nCurValue unsigned int Current value.
The node name (property key) of the current
strCurSymbolic char[] value, the length is defined by the macro
y "MV_FG_MAX_SYMBOLIC_STRLEN" (the value is
64).
nSupportedNum unsigned int The number of supported enumeration types.
The value of supported enumeration types, the
nSupportValue unsigned int[] number is defined by the macro
PP g "MV_FG_MAX_SYMBOLIC_NUM" (the value is
64).
The node name (property key) of the value of
supported enumeration types. The number is
defined by the macro
strSymbolic char] "MV_FG_MAX_SYMBOLIC_NUM" (the value is 64)
and the length is defined by the macro
"MV_FG_MAX_SYMBOLIC_STRLEN" (the value is
64).

42

Frame Grabber SDK (Windows-C) Developer Guide

Member Data Type Description
nReserved[4] unsigned int[] Reserved.
4.1.11 MV_FG_EVENT_INFO
Structure about Event Information
Member Data Type Description
Event name, the maximum length is 128 bytes
EventName char(] (value of macro
"MV_FG_MAX_EVENT_NAME_SIZE").
nEventID unsigned int Event ID.
nBlockID uint64_t Frame No., valid for stream-related events.
nTimestamp uint64_t Timestamp.
. Event data, which is an internal buffer and needs
pEventData void* L
to be processed in time.
nEventDataSize unsigned int Length of event data.
nReserved[4] unsigned int[] Reserved.

4.1.12 MV_FG_FLOATVALUE

Structure about Float Type Value

Member Data Type Description
fCurValue float Current value.
fMax float The maximum value.
fMin float The minimum value.
nReserved[4] unsigned int[] Reserved.

4.1.13 MV_FG_FRAME_SPEC_INFO

Structure about Watermark Information

Member

Data Type

nSecondCount

unsigned int Seconds.

43

Description

Frame Grabber SDK (Windows-C) Developer Guide

Member Data Type Description
nCycleCount unsigned int Number of cycles.
nCycleOffset unsigned int The offset of a cycle.
fGain float Gain.
fExposureTime float Exposure time.
nAverageBrightness unsigned int Average brightness.
nRed unsigned int Red.
nGreen unsigned int Green.
nBlue unsigned int Blue.
nFrameCounter unsigned int Total number of frames.
nTriggerindex unsigned int Trigger counting.
ninput unsigned int Input.
nOutput unsigned int Output.
nOffsetX unsigned short Offset in the x coordinate.
nOffsetY unsigned short Offset in the y coordinate.
nFrameWidth unsigned short Watermark width.
nFrameHeight unsigned short Watermark height.
nReserved[16] unsigned int[] Reserved.

4.1.14 MV_FG_GAMMAL_INFO

Structure about Gamma Information

[E]Note

When setting the Gamma curve correction, the valid corrected curve is required.

Member

Data Type

Description

enGammaType

MV_FG_GAMMA_TYPE

Gamma type.

fGammaValue

float

Gamma value.
Value range: [0.1, 4.0]

pGammaCurveBuf unsigned char* Gamma curve buffer.
nGammaCurveBufLen unsigned int Length of gamma curve.
nReserved[4] unsigned int[] Reserved.

44

Frame Grabber SDK (Windows-C) Developer Guide

4.1.15 MV_FG_HB_DECODE_PARAM

Structure about Lossless Decoding Parameters

Member Data Type Description
pSrcBuf unsigned char* Input data buffer.
nSrcLen unsigned int Input data size.

stOutputimagelnfo

MV_FG_OUTPUT_IMAGE_INFO

Output image information.

stFrameSpecinfo

MV_FG_FRAME_SPEC_INFO

Watermark information. (Not
supported.)

nRes|§] unsigned int[] Reserved.
4.1.16 MV_FG_INPUT_IMAGE_INFO
Structure about Input Image Information
Member Data Type Description
nWidth unsigned int Image width.
nHeight unsigned int Image height.
enPixelType MV_FG_PIXEL_TYPE Pixel format.
plmageBuf unsigned char* Input image buffer.
nimageBufLen unsigned int Input image length.
nReserved[4] unsigned int[] Reserved.

4.1.17 MV_FG_DISPLAY_FRAME_INFO

Structure about the Displayed Image Information

Member Data Type Description
nWidth unsigned int Image width.
nHeight unsigned int Image height.
enPixelType MV_FG_PIXEL_TYPE Pixel format.
plmageBuf unsigned char* Input image buffer.
nimageBufLen unsigned int Input image length.

45

Frame Grabber SDK (Windows-C) Developer Guide

Member Data Type Description

nReserved[4] unsigned int[] Reserved.
4.1.18 MV_FG_INTERFACE_INFO
Structure about Frame Grabber Information

Member Data Type Description
. . Frame grabber type. See Frame Grabber
nTLayerType unsigned int Tvpe for details.
nReserved[4] unsigned int[] Reserved.

Ifacelnfo

union {

MV_CXP_INTERFACE_INFO
stCXPlIfacelnfo;

MV _GEV_INTERFACE_INFO
stGEVIfacelnfo;

MV _GEV_INTERFACE_INFO
stCMLIfacelnfo;

unsigned int nReserved[256];

}

be used is determined by nTLayerType.

stCXPlIfacelnfo: CoaXPress frame grabber
information.

stGEVIfacelnfo: GigE Vision frame grabber
information.

stCMLIfacelnfo: Camera Link frame
grabber information.

4.1.19 MV_FG_INTVALUE

Structure about Integer Type Value

Member Data Type Description
nCurValue int64_t Current value.
nMax int64_t The maximum value.
nMin int64_t The minimum value.
ninc int64_t Increment.
nReserved[16] unsigned int[] Reserved.

46

Frame grabber information. The member to

Frame Grabber SDK (Windows-C) Developer Guide

4.1.20 MV_FG_OUTPUT_IMAGE_INFO

Structure about Output Image Information

Member Data Type Description
nWidth unsigned int Image width.
nHeight unsigned int Image height.
enPixelType MV_FG_PIXEL_TYPE Pixel format.
plmageBuf unsigned char* Image buffer.
nlmageBufSize unsigned int Image buffer size.
nimageBufLen unsigned int Image length.
nReserved[4] unsigned int[] Reserved.
4.1.21 MV_FG_RECONSTRUCT_INFO
Structure about Image Reconstruction Information
Member Data Type Description

stinputimagelnfo

MV_FG_INPUT_IMAGE_INFO

Input image information.

stOutputimagelnfo

MV_FG_OUTPUT_IMAGE_INF

Output image information, the
maximum number of images is

[0)

defined by the macro
"MV_FG_MAX_SPLIT_NUM" (the
value is 8).

enReconstructMode

MV_FG_RECONSTRUCT_MOD

E

Image reconstruction mode.

nReserved[4]

unsigned int(]

Reserved.

4.1.22 MV_FG_SAVE_BITMAP_INFO

Structure about BMP Image Saving Information

Member

Data Type

Description

stinputimagelnfo

MV_FG_INPUT_IMAGE_INFO

Input image information.

pBmpBuf

unsigned char*

Buffer of output BMP image.

nBmpBufSize

unsigned int

Size of output buffer.

47

Frame Grabber SDK (Windows-C) Developer Guide

Member Data Type Description
nBmpBufLen unsigned int Length of output BMP image.
enCfaMethod MV_FG_CFA_METHOD Interpolation method.
nReserved[4] unsigned int[] Reserved.

4.1.23 MV_FG_SAVE_JPEG_INFO
Structure about JPEG Image Saving Information
Member Data Type Description

stinputimageinfo

MV_FG_INPUT_IMAGE_INFO

Input image information.

pJpgBuf unsigned char* Buffer of output JPEG image.
nJpgBufSize unsigned int Size of output buffer.
nJpgBuflLen unsigned int Length of output JPEG image.
.)) Encoding quality.
nJpgQuality unsigned int
Range of value: (0, 100].

enCfaMethod MV_FG_CFA_METHOD Interpolation method.
nReserved[4] unsigned int[] Reserved.

4.1.24 MV_FG_SAVE_PNG_TO_FILE_INFO

Structure about PNG Image Saving Information

Member Data Type Description

stinputimageinfo

MV_FG_INPUT_IMAGE_INFO

Input image information.

pclmagePath

char*

Path of the input image.

nPngCompression

unsigned int

Encoding compression rate,
range: [0, 9].

enCfaMethod

MV_FG_CFA_METHOD

Interpolation method.

nReserved[4]

unsigned int[]

Reserved.

48

Frame Grabber SDK (Windows-C) Developer Guide

4.1.25 MV_FG_SAVE_TIFF_TO_FILE_INFO

Structure about TIFF Image Saving Information

Member

Data Type

Description

stinputimagelnfo

MV_FG_INPUT_IMAGE_INFO

Input image information.

pclmagePath char* Path of the input image.
fXResolution float Horizontal resolution.
fYResolution float Vertical resolution.

enResolutionUnit

MV_FG_RESOLUTION_UNIT

Resolution unit.

enCfaMethod MV_FG_CFA_METHOD Interpolation method.
nReserved[4] unsigned int[] Reserved.
4.1.26 MV_FG_STRINGVALUE
Structure about String Type Value
Member Data Type Description
strCurValue[256] char Current value.
nMaxLength int64_t The maximum length.
nReserved[4] unsigned int[] Reserved.

4.1.27 MV_GEV_DEVICE_INFO

Structure about GigE Vision Device Information

Member Data Type Description
nlpCfgOption unsigned int IP configurations supported by the device.
nipCfgCurrent unsigned int Current IP configuration.
nCurrentlp unsigned int Current IP address.
nCurrentSubNetMask unsigned int Current subnet mask.
nDefultGateWay unsigned int Current gateway.
nNetExport unsigned int Network interface IP address.
nMacAddress uint64_t MAC address.

49

Frame Grabber SDK (Windows-C) Developer Guide

Member Data Type Description
Device vendor name, the length is defined by
chVendorName unsigned charf] the macro "MV_FG_MAX_DEV_INFO_SIZE"

(the value is 64).

chModelName

unsigned charf]

Device model name, the length is defined by
the macro "MV_FG_MAX_DEV_INFO_SIZE"
(the value is 64).

chManufacturerinfo

unsigned charf]

Device manufacturer information, the length
is defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is
64).

chDeviceVersion

unsigned charf]

Device version, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the
value is 64).

chSerialNumber

unsigned charf]

Device serial number, the length is defined
by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is
64).

chUserDefinedName

unsigned charf(]

User-defined name, the length is defined by
the macro "MV_FG_MAX_DEV_INFO_SIZE"
(the value is 64).

chDevicelD

unsigned char(]

Device ID, the length is defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is
64).

nReserved[48]

unsigned int[]

Reserved.

4.1.28 MV_GEV_INTERFACE_INFO

Structure about GigE Vision Frame Grabber Information

Member

Data Type

Description

chinterfacelD

unsigned charf]

Frame grabber ID, the length is defined by
the macro "MV_FG_MAX_IF_INFO_SIZE"
(the value is 64).

chDisplayName

unsigned charf]

Displayed name, the length is defined by
the macro "MV_FG_MAX_IF_INFO_SIZE"
(the value is 64).

chSerialNumber

unsigned charf]

Serial number, the length is defined by the
macro "MV_FG_MAX_IF_INFO_SIZE" (the
value is 64).

nPCIEInfo

unsigned int

Information about the PCle slot of the

50

Frame Grabber SDK (Windows-C) Developer Guide

Member Data Type Description

frame grabber. The lower 16 bits are valid
bits: bits 0 to 2 indicate function, bits 3 to 7
indicate device, and bits 8 to 15 indicate
bus.

nReserved[64] unsigned int[] Reserved.

4.2 Enumeration

4.2.1 MV_FG_BUFFER_QUEUE_TYPE

Enumeration about the types of buffer queues.

Enumeration Type Value Description

Flush buffers from the input

MV_FG_BUFFER_QUEUE_INPUT_TO_OUTPUT 0 queue to the output queue.

MV_FG_BUFFER_QUEUE_OUTPUT_DISCARD 1 2LZCuagd buffers in the output
Flush all buffers (including those

MV_FG_BUFFER_QUEUE_ALL_TO_INPUT 2 in the output queue) to the input

queue.

Flush unused buffers to the input

MV_FG_BUFFER_QUEUE_UNQUEUED_TO_INPUT 3 queue

Discard all queued buffers (those
MV_FG_BUFFER_QUEUE_ALL_DISCARD 4 in the input queue and the output
queue).

4.2.2 MV_FG_CFA_METHOD

Enumeration about the Color Filter Array (CFA) interpolation methods.

Enumeration Type Value Description
MV_FG_CFA_METHOD_QUICK 0 Quick interpolation.
MV_FG_CFA_METHOD_BALANCE 1 Balanced interpolation.
MV_FG_CFA_METHOD_OPTIMAL 2 Optimal interpolation.

51

Frame Grabber SDK (Windows-C) Developer Guide

4.2.3 MV_FG_CONFIG_CMD

Enumeration about the configuration command.

Enumeration Type Value Description
CONFIG_CMD_INT64_BAUDRATE 1 Baud rate (integer type).
4.2.4 MV_FG_EXCEPTION_TYPE
Enumeration about Exception Types
Enumeration Type Value Description

EXCEPTION_TYPE_SYSTEM_TEMPERATURE_UPLI The temperature reached the
0x0080 T

MIT upper limit.

EXCEPTION_TYPE_SYSTEM_TEMPERATURE_LOW The temperature reached the
0x0081 L

LIMIT lower limit.

EXCEPTION_TYPE_SYSTEM_DDRL_INIT 0x0082 DDR initialization failed.

EXCEPTION_TYPE_CARD_PACKETBUF_ERR 0x0180 Packet buffer error.

EXCEPTION_TYPE_CARD_ACKPACKETBUF_ERR 0x0181 Response packet buffer error.

EXCEPTION_TYPE_LINKO_STREAM_CRC_ERR 0x1080 ';'r?g? stream CRC verification

E)':([J)EPTION_TYPE_LINKO_STREAM_PACKET_RES 0x1081 Link0 stream packet resending.

EI)E(;::PTION_TYPE_LINKO_STREAM_CTRLPACKET 0x1082 Link0 control packet error.

EXCEPTION_TYPE_LINKO_PRETREATBUF_ERR 0x1090 LinkO pretreatment buffer error.

EXCEPTION_TYPE_LINKO_CAM_ACK_RECVBUF_E Buffer of receiving Link0 camera
0x1091

RR ack packet error.

EXCEPTION_TYPE_LINKO_CAM_ACK_TRANSMITB Buffer of transmitting Link0
0x1092

UF_ERR camera packet error.

EXCEPTION_TYPE_LINK1_STREAM_CRC_ERR 0x1180 'é'rrr‘(')‘: stream CRC verification

E)'ngPTION'TYPE'LINK.I'STREAM'PACKET'RES 0x1181 Link1 stream packet resending.

EI)E(::PTION_TYPE_LINH_STREAM_CTRLPACKET 0x1182 Link1 control packet error.

EXCEPTION_TYPE_LINK1_PRETREATBUF_ERR 0x1190 Link1 pretreatment buffer error.

52

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type Value Description
EXCEPTION_TYPE_LINK1_CAM_ACK_RECVBUF_E Buffer of receiving Link1 camera
0x1191
RR ack packet error.
EXCEPTION_TYPE_LINK1_CAM_ACK_TRANSMITB Buffer of transmitting Link1
0x1192
UF_ERR camera packet error.
EXCEPTION_TYPE_LINK2_STREAM_CRC_ERR 0x1280 t'r?(')‘rz stream CRC verification
E)'\igEPTION'TYPE'LINKZ'STREAM'PACKET'RES 0x1281 Link2 stream packet resending.
EI)E(::PTION_TYPE_LINK2_STREAM_CTRLPACKET 0x1282 Link2 control packet error.
EXCEPTION_TYPE_LINK2_PRETREATBUF_ERR 0x1290 Link2 pretreatment buffer error.
EXCEPTION_TYPE_LINK2_CAM_ACK_RECVBUF_E Buffer of receiving Link2 camera
0x1291
RR ack packet error.
EXCEPTION_TYPE_LINK2_CAM_ACK_TRANSMITB Buffer of transmitting Link2
0x1292
UF_ERR camera packet error.
EXCEPTION_TYPE_LINK3_STREAM_CRC_ERR 0x1380 t'r’r‘(')‘f stream CRC verification
E)'ESEPTION‘TYPE‘LINK3‘STREAM'PACKET'RES 0x1381 Link3 stream packet resending.
Eé(é::PTION_TYPE_LINK3_STREAM_CTRLPACKET 0x1382 Link3 control packet error.
EXCEPTION_TYPE_LINK3_PRETREATBUF_ERR 0x1390 Link3 pretreatment buffer error.
EXCEPTION_TYPE_LINK3_CAM_ACK_RECVBUF_E Buffer of receiving Link3 camera
0x1391
RR ack packet error.
EXCEPTION_TYPE_LINK3_CAM_ACK_TRANSMITB Buffer of transmitting Link3
0x1392
UF_ERR camera packet error.
g)éCEPTION‘TYPE‘STREAMO'DROP‘FRAME‘IMA 0x2080 StreamO0 channel frame dropping.
EXCEPTION_TYPE_STREAMO_IMAGE_DATACOUN Image data counting error of
0x2081
T_ERR StreamO channel.
EXCEPTION_TYPE_STREAMO_DROP_FRAME_TRIG StreamO0 channel frame dropping
0x2082 .
GER triggered.
EXCEPTION_TYPE_STREAMO_QUEUEBUF_ERR 0x2090 Stream0 QUEUE buffer error.
EXCEPTION_TYPE_STREAMO_WDMABUF_ERR 0x2091 Stream0 WDMA buffer error.
EXCEPTION_TYPE_STREAMO_RDMABUF_ERR 0x2092 Stream0 RDMA buffer error.
EXCEPTION_TYPE_STREAMO_PACKETBUF_ERR 0x2093 StreamO0 PACKET buffer error.
EXCEPTION_TYPE_STREAMO_WDMALENGTH_ERR | 0x2094 Stream0 WDMA length error.

53

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type Value Description
EXCEPTION_TYPE_STREAMO_RDMALENGTH_ERR | 0x2095 Stream0 RDMA length error.
:E;)éCEPTION_TYPE_STREAM1_DROP_FRAME_IMA 0x2180 Stream1 channel frame dropping.
EXCEPTION_TYPE_STREAM1_IMAGE_DATACOUN Image data counting error of

0x2181
T_ERR Stream1 channel.
EXCEPTION_TYPE_STREAM1_DROP_FRAME_TRIG Stream1 channel frame dropping
0x2182 :
GER triggered.
EXCEPTION_TYPE_STREAM1_QUEUEBUF_ERR 0x2190 Stream1 QUEUE buffer error.
EXCEPTION_TYPE_STREAM1_WDMABUF_ERR 0x2191 Stream1 WDMA buffer error.
EXCEPTION_TYPE_STREAM1_RDMABUF_ERR 0x2192 Stream1 RDMA buffer error.
EXCEPTION_TYPE_STREAM1_PACKETBUF_ERR 0x2193 Stream1 PACKET buffer error.
EXCEPTION_TYPE_STREAM1_WDMALENGTH_ERR | 0x2194 Stream1 WDMA length error.
EXCEPTION_TYPE_STREAM1_RDMALENGTH_ERR | 0x2195 Stream1 RDMA length error.
g)éCEPTION‘TYPE‘STREAMZ'DROP‘FRAME'IMA 0x2280 Stream?2 channel frame dropping.
EXCEPTION_TYPE_STREAM2_IMAGE_DATACOUN Image data counting error of
0x2281
T_ERR Stream2 channel.
EXCEPTION_TYPE_STREAM2_DROP_FRAME_TRIG Stream?2 channel frame dropping
0x2282 :
GER triggered.
EXCEPTION_TYPE_STREAM2_QUEUEBUF_ERR 0x2290 Stream2 QUEUE buffer error.
EXCEPTION_TYPE_STREAM2_WDMABUF_ERR 0x2291 Stream?2 WDMA buffer error.
EXCEPTION_TYPE_STREAM2_RDMABUF_ERR 0x2292 Stream2 RDMA buffer error.
EXCEPTION_TYPE_STREAM2_PACKETBUF_ERR 0x2293 Stream?2 PACKET buffer error.
EXCEPTION_TYPE_STREAM2_WDMALENGTH_ERR | 0x2294 Stream?2 WDMA length error.
EXCEPTION_TYPE_STREAM2_RDMALENGTH_ERR | 0x2295 Stream?2 RDMA length error.
g)éCEPTION‘TYPE‘STREAM3'DROP‘FRAME‘IMA 0x2380 Stream3 channel frame dropping.
EXCEPTION_TYPE_STREAM3_IMAGE_DATACOUN Image data counting error of
0x2381
T_ERR Stream3 channel.
EXCEPTION_TYPE_STREAM3_DROP_FRAME_TRIG Stream3 channel frame dropping
0x2382 :
GER triggered.
EXCEPTION_TYPE_STREAM3_QUEUEBUF_ERR 0x2390 Stream3 QUEUE buffer error.
EXCEPTION_TYPE_STREAM3_WDMABUF_ERR 0x2391 Stream3 WDMA buffer error.
EXCEPTION_TYPE_STREAM3_RDMABUF_ERR 0x2392 Stream3 RDMA buffer error.
EXCEPTION_TYPE_STREAM3_PACKETBUF_ERR 0x2393 Stream3 PACKET buffer error.

54

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type Value Description
EXCEPTION_TYPE_STREAM3_WDMALENGTH_ERR | 0x2394 Stream3 WDMA length error.
EXCEPTION_TYPE_STREAM3_RDMALENGTH_ERR | 0x2395 Stream3 RDMA length error.
EXCEPTION_TYPE_PCIE_SCHEDULEBUF_ERR 0x3088 Scheduling module error.
EXCEPTION_TYPE_PCIE_SCHEDULE_ERR 0x3089 Scheduling result error.
EXCEPTION_TYPE_PCIE_LINKO_RECVBUF_ERR 0x3180 LinkO receiving buffer error.
EXCEPTION_TYPE_PCIE_LINKO_LENGTH_ERR 0x3181 Link0 control packet length error.
E)I;CEPTION‘TYPE‘PCIE‘LINKO‘SOFT'RECVBUF'E 0x3280 LinkO soft receiving buffer error.
EXCEPTION_TYPE_PCIE_LINKO_SOFT_LENGTH_E 0x3281 LinkO soft control packet length
RR error.
EXCEPTION_TYPE_PCIE_LINK1_RECVBUF_ERR 0x3188 Link1 receiving buffer error.
EXCEPTION_TYPE_PCIE_LINK1_LENGTH_ERR 0x3189 Link1 control packet length error.
E)éCEPTION‘TYPE‘PCIE‘LINK] ~SOFT_RECVBUF_E 0x3288 Link1 soft receiving buffer error.
EXCEPTION_TYPE_PCIE_LINK1_SOFT_LENGTH_E Link1 soft control packet length

0x3289
RR error.
EXCEPTION_TYPE_PCIE_LINK2_RECVBUF_ERR 0x3190 Link2 receiving buffer error.
EXCEPTION_TYPE_PCIE_LINK2_LENGTH_ERR 0x3191 Link2 control packet length error.
E)éCEPTION‘TYPE‘PCIE‘LINKz‘SOFT‘RECVBUF‘E 0x3290 Link2 soft receiving buffer error.
EXCEPTION_TYPE_PCIE_LINK2_SOFT_LENGTH_E 0x3291 Link2 soft control packet length
RR error.
EXCEPTION_TYPE_PCIE_LINK3_RECVBUF_ERR 0x3198 Link3 receiving buffer error.
EXCEPTION_TYPE_PCIE_LINK3_LENGTH_ERR 0x3199 Link3 control packet length error.
E)éCEPTION'TYPE'PCIE'LINK3'SOFT'RECVBUF'E 0x3298 Link3 soft receiving buffer error.
EXCEPTION_TYPE_PCIE_LINK3_SOFT_LENGTH_E Link3 soft control packet length
0x3299
RR error.
EXCEPTION_TYPE_PCIE_STREAMO_RECVBUF_ER FIFO error of stream in Stream0
0x3382
R buffer.
EXCEPTION_TYPE_PCIE_STREAMO_LIST_ERR 0x3383 Invalid list format of StreamO.
EXCEPTION_TYPE_PCIE_STREAMO_SIZE_ERR 0x3384 | Streamo0 image size and memory
mismatched.
EXCEPTION_TYPE_PCIE_STREAM1_RECVBUF_ER FIFO error of stream in Stream1
0x338A
R buffer.
EXCEPTION_TYPE_PCIE_STREAM1_LIST_ERR 0x338B Invalid list format of Stream1.

55

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type Value Description
EXCEPTION_TYPE_PCIE_STREAM1_SIZE_ERR 0x33gc | StreamT image size and memory
mismatched.
EXCEPTION_TYPE_PCIE_STREAM2_RECVBUF_ER FIFO error of stream in Stream?2
0x3392
R buffer.
EXCEPTION_TYPE_PCIE_STREAM2_LIST_ERR 0x3393 Invalid list format of Stream?2.
EXCEPTION_TYPE_PCIE_STREAM2_SIZE_ERR 0x3394 Stream2 image size and memory
mismatched.
EXCEPTION_TYPE_PCIE_STREAM3_RECVBUF_ER FIFO error of stream in Stream3
0x339A
R buffer.
EXCEPTION_TYPE_PCIE_STREAM3_LIST_ERR 0x339B Invalid list format of Stream3.
EXCEPTION_TYPE_PCIE_STREAM3_SIZE_ERR 0x339c | Stream3 image size and memory
mismatched.
EXCEPTION_TYPE_CAMERA_DISCONNECT_ERR 8)1(1 00000 Camera disconnected.
4.2.5 MV_FG_GAMMA_TYPE
Enumeration about the Gamma types.

Enumeration Type Value Description
MV_FG_GAMMA_TYPE_NONE 0 Disabled.
MV_FG_GAMMA_TYPE_VALUE 1 Gamma value.

Gamma curve, which has the

following possibilities:

e When the output image is 8-bit,
the curve length is 256 * size of
(unsigned char);

e When the output image is 10-bit,
the curve length varies according

MV_FG_GAMMA_TYPE_USER_CURVE 2 to the input image.

o Source image format is 10-bit,
the curve length is
1024*sizeof(unsigned short);

o Source image format is 12-bit,
the curve length is
4096*sizeof(unsigned short);

o Source image format is 16-bit,
the curve length is
65536*sizeof(unsigned short).

56

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type Value Description

MV_FG_GAMMA_TYPE_LRGB2SRGB 3 Linear RGB to sRGB conversion.

sRGB to linear RGB conversion. It is
supported only for color
interpolation and is invalid for color
correction.

MV_FG_GAMMA_TYPE_SRGB2LRGB 4

4.2.6 MV_FG_NODE_ACCESS_MODE

Enumeration about the access modes of a node.

Enumeration Type

Value

Description

ACCESS_MODE_NI 0 Not implemented.
ACCESS_MODE_NA 1 Not available.
ACCESS_MODE_WO 2 Write only.
ACCESS_MODE_RO 3 Read only.
ACCESS_MODE_RW 4 Read and write.
ACCESS_MODE_UNDEFINED 5 Undefined.

4.2.7 MV_FG_NODE_INTERFACE_TYPE

Enumeration about the types of a node.

Enumeration Type Value Description
INTERFACE_TYPE_Value 0 Value
INTERFACE_TYPE_Base 1 Base
INTERFACE_TYPE_Integer 2 Integer
INTERFACE_TYPE_Boolean 3 Boolean
INTERFACE_TYPE_Command 4 Command
INTERFACE_TYPE_Float 5 Float
INTERFACE_TYPE_String 6 String
INTERFACE_TYPE_Register 7 Register
INTERFACE_TYPE_Category 8 Category
INTERFACE_TYPE_Enumeration 9 Enumeration

57

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type

Value

Description

INTERFACE_TYPE_EnumEntry

10 EnumEntry

INTERFACE_TYPE_Port

11 Port

4.2.8 MV_FG_PIXEL_TYPE

Enumeration about the pixel formats.

Enumeration Type

Value

Description

Undefined Format

MV_FG_PIXEL_TYPE_Undefined

OXFFFFFFFF

Undefined format.

Mono Format

MV_FG_PIXEL_TYPE_Mono8

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(8) | 0x0001

Mono8

MV_FG_PIXEL_TYPE_Mono10

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0003

Mono10

MV_FG_PIXEL_TYPE_Mono10_Pac
ked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0004

Mono10_Packed

MV_FG_PIXEL_TYPE_Mono12

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0005

Mono12

MV_FG_PIXEL_TYPE_Mono12_Pac
ked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0006

Mono12_Packed

MV_FG_PIXEL_MONO |

MV_FG_PIXEL_TYPE_Mono16 MV_FG_PIXEL_BIT_COUNT(16) | 0x0007 | Mono1e
Bayer Format

MV_FG_PIXEL_TYPE_BayerGR8 meEgZE&Etm%\lCOOLNT(S) |0x0008 | BaYeTGR8
MV_FG_PIXEL_TYPE_BayerRG8 meEgZE&Etm%\lCOOLNT(S) |0x0009 | BaYerRG8
MV_FG_PIXEL_TYPE_BayerGB8 W:Egﬁ:iglﬂg:gflcooluNT(s) |0x000A | DAYercBs
MV_FG_PIXEL_TYPE_BayerBG8 W:Egﬁ:igtg:%\lc%luNT(s) |oxoo0B | BaverBGs
MV_FG_PIXEL_TYPE_BayerGR10 W:Eg:ﬁ:igtg’:g{"coobl\jm 6)| 0x000C | BRYErGR10
MV_FG_PIXEL_TYPE_BayerRG10 W:Eg:ﬁ:igtg’:g{"coobl\jm 6)| 0x000D | BVerRG10
MV_FG_PIXEL_TYPE_BayerGB10 MV_FG_PIXEL_MONO | BayerGB10

58

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type Value Description
MV_FG_PIXEL_BIT_COUNT(16) | 0XO00E
MV_FG_PIXEL_TYPE_BayerBG10 miig:ﬁ:igtg:%\lcooluNTm 6)| 0x000F | BVerBG10
MV_FG_PIXEL_TYPE_BayerGR12 M¥:ESZE:§Et:§$_“'c°oLNT<1 6)| 0x0010 | BHVErGR12
MV_FG_PIXEL_TYPE_BayerRG12 M¥:ESZE:§Et:§$_“'c°oLNT<1 6)| 0x00171 | BVErRG12
MV_FG_PIXEL_TYPE BayerGB12 W:Egig:igtmwcoobmm 6)| 0x0012 | BaYercB12
MV_FG_PIXEL_TYPE_BayerBG12 | MV-FG-PIXELMONO | BayerBG12

MV_FG_PIXEL_BIT_COUNT(16) | 0x0013

MV_FG_PIXEL_TYPE_BayerGR10_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0026

BayerGR10_Packed

MV_FG_PIXEL_TYPE_BayerRG10_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0027

BayerRG10_Packed

MV_FG_PIXEL_TYPE_BayerGB10_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0028

BayerGB10_Packed

MV_FG_PIXEL_TYPE_BayerBG10_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0029

BayerBG10_Packed

MV_FG_PIXEL_TYPE_BayerGR12_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x002A

BayerGR12_Packed

MV_FG_PIXEL_TYPE_BayerRG12_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x002B

BayerRG12_Packed

MV_FG_PIXEL_TYPE_BayerGB12_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x002C

BayerGB12_Packed

MV_FG_PIXEL_TYPE_BayerBG12_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x002D

BayerBG12_Packed

MV_FG_PIXEL_MONQO |

MV_FG_PIXEL_TYPE BayerGR16 | imr e 0l e o)t 16) oxooze | BaYerGR16
MV_FG_PIXEL_TYPE_BayerRG16 W:Eg:E&Etm?i\lcoobNTm 6)| 0x002F | BYErRET6
MV_FG_PIXEL_TYPE_BayerGB16 WZESZE&EEE%OLNTU 6) 0x0030 | BYErGB16
MV_FG_PIXEL_TYPE_BayerBG16 | M1V~ C-PIXEL MONO | BayerBG16

MV_FG_PIXEL_BIT_COUNT(16) | 0x0031

RGB Format

MV_FG_PIXEL_TYPE_RGB8_Packe
d

MV_FG_PIXEL_COLOR |
MV_FG_PIXEL_BIT_COUNT(24) | 0x0014

RGB8_Packed

MV_FG_PIXEL_TYPE_BGRS8_Packe

MV_FG_PIXEL_COLOR |

BGR8_Packed

59

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type

Value

Description

d

MV_FG_PIXEL_BIT_COUNT(24) | 0x0015

MV_FG_PIXEL_TYPE_RGBAS8_Pack
ed

MV_FG_PIXEL_COLOR |

MV_FG_PIXEL_BIT_COUNT(32) | 0x0016

RGBAS8_Packed

MV_FG_PIXEL_TYPE_BGRAS8_Pack
ed

MV_FG_PIXEL_COLOR |

MV_FG_PIXEL_BIT_COUNT(32) | 0x0017

BGRAS8_Packed

MV_FG_PIXEL_TYPE_RGB16_Pack
ed

MV_FG_PIXEL_COLOR |

MV_FG_PIXEL_BIT_COUNT(48) | 0x0033

RGB16_Packed

YUV Format

MV_FG_PIXEL_TYPE_YUV422_Pac
ked

MV_FG_PIXEL_COLOR |

MV_FG_PIXEL_BIT_COUNT(16) | 0x001F

YUV422_Packed

MV_FG_PIXEL_TYPE_YUV422_YUY
V_Packed

MV_FG_PIXEL_COLOR |

YUV422_YUYV_Pac

MV_FG_PIXEL_BIT_COUNT(16) | 0x0032 | ked

4.2.9 MV_FG_RECONSTRUCT_MODE

Enumeration about the image reconstruction modes.

Enumeration Type

Value

Description

Rotation Mode

The supported pixel formats of rotation mode are: MV_FG_PIXEL_TYPE_Mono8,
MV_FG_PIXEL_TYPE_RGB8_Packed, and MV_FG_PIXEL_TYPE_BGR8_Packed.

RECONSTRUCT_MODE_ROTATE_90

MV_FG_ROTATE_MODE | 0x0001

Rotate 90 degrees.

RECONSTRUCT_MODE_ROTATE_18
0

MV_FG_ROTATE_MODE | 0x0002

Rotate 180 degrees.

RECONSTRUCT_MODE_ROTATE_27
0

MV_FG_ROTATE_MODE | 0x0003

Rotate 270 degrees.

Flip Mode

The supported pixel formats of flip mode are: MV_FG_PIXEL_TYPE_Mono8,
MV_FG_PIXEL_TYPE_RGB8_Packed, and MV_FG_PIXEL_TYPE_BGR8_Packed.

RECONSTRUCT_MODE_FLIP_VERTI
CAL

MV_FG_FLIP_MODE | 0x0001

Vertical flip.

RECONSTRUCT_MODE_FLIP_HORIZ
ONTAL

MV_FG_FLIP_MODE | 0x0002

Horizontal flip.

Split by Row

This mode is supported by line scan cameras only.

RECONSTRUCT_MODE_SPLIT_BY_L
INE_2

MV_FG_SPLIT_BY_LINE_MODE |
0x0002

Split into 2 images by row.

60

Frame Grabber SDK (Windows-C) Developer Guide

Enumeration Type

Value

Description

RECONSTRUCT_MODE_SPLIT_BY_L
INE_3

MV_FG_SPLIT_BY_LINE_MODE |
0x0003

Split into 3 images by row.

RECONSTRUCT_MODE_SPLIT_BY_L
INE_4

MV_FG_SPLIT_BY_LINE_MODE |
0x0004

Split into 4 images by row.

4.2.10 MV_FG_RESOLUTION_UNIT

Enumeration About Resolution Unit

Enumeration Type Macro Definition Value Description
MV_FG_Resolution_Unit_None | 1 No unit.
MV_FG_Resolution_Unit_Inch 2 Inch.
MV_FG_Resolution_Unit_CENTI 3 Centimeter.

METER

61

Frame Grabber SDK (Windows-C) Developer Guide

Chapter 5 Macro Definition

Table 5-1 Handle Type

Type Definition Description
IFHANDLE Frame grabber handle.
DEVHANDLE Device handle.
STREAMHANDLE Stream channel handle.
BUFFERHANDLE Buffer handle.
Parameter handle. It is the handle of the object to which the
PORTHANDLE parameter belongs; the object can be a frame grabber, device, or
stream channel.
Image handle. It is the handle of the object to which the image
IMAGEHANDLE belongs; the object can be a frame grabber, device, or stream
channel.
Table 5-2 Frame Grabber Type
Macro Value Description
MV_FG_GEV_INTERFACE 0x00000001 GigE Vision frame grabber.
MV_FG_U3V_INTERFACE 0x00000002 USB3 Vision frame grabber.
E/II;/_FG_CAMERALINK_INTERFA 0x00000004 Camera Link frame grabber.
MV_FG_CXP_INTERFACE 0x00000008 CoaXPress frame grabber.

Table 5-3 Frame Grabber Access Mode

Macro Value Description
MV_FG_ACCESS_UNKNOWN 0x0 Permission undefined.
MV_FG_ACCESS.READONLY 0x1 Read only; no permission to set or get node

values.
MV_FG_ACCESS_CONTROL 0x2 Permission to control.

Table 5-4 Device Type

Macro Value Description
MV_FG_GEV_DEVICE 0x0000000T GigE Vision device.
MV_FG_U3V_DEVICE 0x00000002 USB3 Vision device.
MV_FG_CAMERALINK_DEVICE | 0x00000003 Camera Link device.
MV_FG_CXP_DEVICE 0x00000004 CoaXPress device.

62

Frame Grabber SDK (Windows-C) Developer Guide

Table 5-5 Pixel Format

Macro Value Description
MV_FG_PIXEL_MONO 0x01000000 Monochrome format.
MV_FG_PIXEL_COLOR 0x02000000 Color format.
MV_FG_PIXEL_CUSTOM 0x80000000 Custom format.

MV_FG_PIXEL_BIT_COUNT(n)

((n) << 16)

Location of the number of bits.

Table 5-6 Flag Bit of GigE Vision Device

Macro Value Description
¥V-FG-GEV—'FCONF'G-LLA-B' 0x00000004 Whether LLA is enabled.
E\T’-FG-GEV-'FCONF'G-DHCP- 0x00000002 Whether DHCP is enabled.
MV_FG_GEV_IFCONFIG_PERSIS N
TENT_BIT 0x00000001 Whether static IP is enabled.
MV_FG_GEV_IFCONFIG_PR_BIT | 0x80000000 Whether pause frames can be

processed.
MV_FG_GEV_IFCONFIG_PG_BIT | 0x40000000 Whether pause frames can be

generated.

Table 5-7 Maximum Value

Macro

Value

Description

The maximum length of string for frame

MV_FG_MAX_IF_INFO_SIZE 64 . :
grabber information.
MV_FG_MAX_DEV_INFO_SIZE 64 The maximum length of string for device
information.
;/IEV‘FG‘MAX‘EVENT‘NAM E_S 128 The maximum length of event name.
MV_FG MAX SYMBOLIC_ NUM | 64 The maximum number of node names
- - - (property keys) for the XML description file.
MV_FG_MAX_SYMBOLIC_STRL 64 The maximum length for node names

EN

(property keys) of the XML description file.

Table 5-8 Image Reconstruction

Macro Value Description
MV_FG_MAX_SPLIT_NUM 8 The maximum number of images to split a
source image into.
MV_FG_ROTATE_MODE 0x1000 Rotation mode.
MV_FG_FLIP_MODE 0x2000 Flip mode.

63

Frame Grabber SDK (Windows-C) Developer Guide

Macro Value Description

MV_FG_SPLIT_BY_LINE_MODE | 0x3000 Split by row.
Table 5-9 Baud Rate

Macro Value Description
MV_FG_BAUDRATE_9600 0x0000000T 9600
MV_FG_BAUDRATE_19200 0x00000002 19200
MV_FG_BAUDRATE_38400 0x00000004 38400
MV_FG_BAUDRATE_57600 0x00000008 57600
MV_FG_BAUDRATE_115200 0x00000010 115200
MV_FG_BAUDRATE_230400 0x00000020 230400
MV_FG_BAUDRATE_460800 0x00000040 460800
MV_FG_BAUDRATE_921600 0x00000080 921600
MV_FG_BAUDRATE_AUTOMAX | 0x40000000 é&‘;‘;:sggt@tteﬁenggxmi’:r‘;’_“ value

64

Frame Grabber SDK (Windows-C) Developer Guide

Appendix A. Sample Code

A.1 Acquire Images with Callback Function

The following sample codes show how to acquire images using callback functions.
#include <stdio.h>

#include <Windows.h>

#include <process.h>

#include <conio.h>

#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define FILE_NAME_LEN 256 // The maximum length of file name

// User-defined parameters.
typedef struct _Callback_UserParam_

{
DEVHANDLE hDevice; // Device handle
MV_FG_SAVE_JPEG_INFO stSaveJpegInfo; // JPEG image saving information
}Callback_User;
// Wait for key press.
void WaitForKeyPress(void)
{
while(!_kbhit())
Sleep(10);
}
_getch();

// Clear residual data from stdin.
void ClearStdin(void)

{
char c ='\0}
while (1)
{
c = getchar();
if (\n'==c || EOF == ¢)
{
break;
}
}
}

65

Frame Grabber SDK (Windows-C) Developer Guide

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)

{
switch(enExceptionType)

{
case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
{
printf("Exception: Interface Disconnected!\n");
break;
}
case EXCEPTION_TYPE_DEVICE_DISCONNECT:
{
printf("Exception: Device Disconnected!\n");
break;
}
case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
{
printf("Exception: Abnormal Image'\n");
break;
}
case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
{
printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
break;
}
case EXCEPTION_TYPE_STREAM_DISCONNECTED:
{
printf("Exception: Stream Disconnected!\n");
break;
}
default:
{
printf("Unknown Exception\n");
break;
}
}

// Save the original JPEG image data.
void SaveJpeglmage(unsigned char* pJpgBuf, unsigned int ndpegSize)
{

if (NULL != pJpgBuf && 0 < nJpegSize)

{
char szFileName[FILE_NAME_LEN] ={0};

SYSTEMTIME sys;
GetLocalTime(&sys);
sprintf_s(szFileName, FILE_NAME_LEN, "Image_%04d%02d%02d%02d%02d%02d%04d.jpg",
sys.wYear, sys.wMonth,
sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);

66

Frame Grabber SDK (Windows-C) Developer Guide

FILE* plmageFile = NULL;
if ((0 != fopen_s(&plmageFile, szFileName, "wb")) || (NULL == plmageFile))
{

return;

}

fwrite(pJpgBuf, 1, nJpegSize, plmageFile);
fclose(plmageFile);

// Frame buffer information callback function.
void FrameCb(MV_FG_BUFFER_INFO* pstBufferlnfo, void* pUser)

{

if (pstBufferinfo && pUser)

{

Callback_User* pstUser = (Callback_User*)pUser;
int nRet =0;
DEVHANDLE hDevice = pstUser->hDevice;

MV_FG_SAVE_JPEG_INFO stSaveJpeginfo = pstUser->stSaveJpegInfo;

printf("FrameNumber:%2164d%, Width:%d, Height:%d\n", pstBufferInfo->nFramelD,

pstBufferinfo->nWidth, pstBufferinfo->nHeight);

stSavedJpeglnfo.stinputimagelnfo.plmageBuf = (unsigned char*)pstBufferinfo->pBuffer;
stSaveJpeglnfo.stinputimagelnfo.nimageBufLen = pstBufferinfo->nFilledSize;
stSaveJpeglnfo.stinputimagelnfo.nHeight = pstBufferlnfo->nHeight;
stSavedpeginfo.stinputimagelnfo.nWidth = pstBufferInfo->nWidth;
stSaveJpeglnfo.stinputimagelnfo.enPixelType = pstBufferinfo->enPixelType;

unsigned int nSize = pstBufferInfo->nHeight * pstBufferinfo->nWidth * 2;
if (stSaveJpeginfo.nJpgBufSize < nSize)

if (stSaveJpegInfo.pJpgBuf)

free (stSaveJpeginfo.pJpgBuf);
stSaveJpeglnfo.pJpgBuf = NULL;
}
stSaveJpegInfo.pJpgBuf = (unsigned char*)malloc(nSize);
if (NULL == stSaveJpegInfo.pJpgBuf)

{
printf("malloc pConvertData fail'\n");
nRet = MV_FG_ERR_RESOURCE_EXHAUSTED;
return;

}

stSaveJpeglinfo.nJpgBufSize = nSize;
}

stSaveJpeglinfo.ndpgBuflLen = 0;
stSaveJpeglinfo.enCfaMethod = MV_FG_CFA_METHOD_OPTIMAL;

67

Frame Grabber SDK (Windows-C) Developer Guide

stSaveJpeglinfo.nJpgQuality = 60;

nRet = MV_FG_SaveJpeg(hDevice, &stSaveJpeginfo);
if (MV_FG_SUCCESS != nRet)
{

}
else

{
}

printf("Save Jpeg failed! %#x\n", nRet);

SaveJpeglmage(stSaveJpeginfo.pJpgBuf, stSaveJpeginfo.nJpgBufLen);

}

return;

}

// Print frame grabber information.
bool Printinterfacelnfo(unsigned int ninterfaceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < ninterfaceNum; i++)

{
MV_FG_INTERFACE_INFO stinterfacelnfo = {0 };

nRet = MV_FG_GetInterfacelnfo(i, &stInterfacelnfo);

if (MV_FG_SUCCESS != nRet)

{
printf("Get info of No.%d interface failed! %#x\n", i, nRet);
return false;

}

switch (stinterfacelnfo.nTLayerType)

{
case MV_FG_CXP_INTERFACE:

{
printf("[CXP]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCXPlIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCXPlIfacelnfo.chSerialNumber);

break;
}
case MV_FG_GEV_INTERFACE:
{

printf("[GEV]INo.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chinterfacelD,
stinterfacelnfo.Ifacelnfo.stGEVIfacelnfo.chSerialNumber);

break;

68

Frame Grabber SDK (Windows-C) Developer Guide

case MV_FG_CAMERALINK_INTERFACE:

{
printf("[CML]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chinterfacelD,
stinterfacelnfo.Ifacelnfo.stCMLIfacelnfo.chSerialNumber);

break;
}
default:
{
printf("Unknown interface type.\n");
return false;
}

}

return true;

}

// Print device information.
bool PrintDevicelnfo(IFHANDLE hinterface, unsigned int nDeviceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < nDeviceNum; i++)
MV_FG_DEVICE_INFO stDevicelnfo ={ 0 };

nRet = MV_FG_GetDevicelnfo(hInterface, i, &stDevicelnfo);
if (MV_FG_SUCCESS != nRet)
{
printf("Get info of No.%d device failed! %#x\n", i, nRet);
return false;

}

switch (stDevicelnfo.nDevType)

{
case MV_FG_CXP_DEVICE:

{
printf("[CXP]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCXPDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCXPDevinfo.chModelName,
stDevicelnfo.Devinfo.stCXPDevinfo.chSerialNumber);

break;
}
case MV_FG_GEV_DEVICE:
{

printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,

69

Frame Grabber SDK (Windows-C) Developer Guide

stDevicelnfo.Devinfo.stGEVDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stGEVDevinfo.chModelName,
stDevicelnfo.Devinfo.stGEVDevInfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_DEVICE:
{

printf("[CML]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCMLDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCMLDevInfo.chModelName,
stDevicelnfo.DevInfo.stCMLDevInfo.chSerialNumber);

break;
}
default:
{
printf("Unknown device type.\n");
return false;
}
}
}
return true;
}
int main()
{
int nRet = 0;
IFHANDLE hinterface = NULL;
DEVHANDLE hDevice = NULL;
STREAMHANDLE hStream = NULL;
do
{

// Enumerate frame grabbers.
bool bChanged = false;
nRet = MV_FG_UpdatelnterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update interface list failed! %#x\n", nRet);
break;

}

// Get the number of frame grabbers.

unsigned int ninterfaceNum = 0;

nRet = MV_FG_GetNuminterfaces(&nInterfaceNum);

if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)

{
printf("No interface found! return = %d, number = %d\n", nRet, ninterfaceNum);
break;

70

Frame Grabber SDK (Windows-C) Developer Guide

}

// Display frame grabber information.
if (false == PrintInterfacelnfo(nInterfaceNum))

{
}

break;

// Select frame grabber.

int ninterfacelndex = -1;
printf("Select an interface: ");
scanf_s("%d", &niInterfacelndex);
ClearStdin();

if (nInterfacelndex < 0 || ninterfacelndex >= (int)ninterfaceNum)
{

printf("Invalid interface index.\nQuit.\n");

break;

}

// Enable the frame grabber and get the frame grabber handle.
nRet = MV_FG_Openinterface((unsigned int)ninterfacelndex, &hinterface);
if (MV_FG_SUCCESS != nRet)
{
printf("Open No.%d interface failed! %#x\n", ninterfacelndex, nRet);
break;

}

// Register the exception information callback function of the frame grabber.
//nRet = MV_FG_RegisterExceptionCallBack(hInterface, ExceptionCb, hinterface);
//if (MV_FG_SUCCESS != nRet)

I

// printf("Register interface exception callback failed'\n");
// break;

/1}

// Enumerate cameras of the frame grabber.
nRet = MV_FG_UpdateDeviceList(hInterface, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update device list failed! %#x\n", nRet);
break;

}

// Get the number of devices.

unsigned int nDeviceNum = 0;

nRet = MV_FG_GetNumbDevices(hinterface, & DeviceNum);

if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)

{
printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
break;

71

Frame Grabber SDK (Windows-C) Developer Guide

}

// Display device information.
if (false == PrintDevicelnfo(hInterface, nDeviceNum))

{
}

break;

// Select device.

int nDevicelndex = -1;
printf("Select a device: ");
scanf_s("%d", &nDevicelndex);
ClearStdin();

if (nDevicelndex < 0 || nDevicelndex >= (int)nDeviceNum)
{

printf("Invalid device index.\nQuit.\n");

break;
}

// Open the device and get the device handle.
nRet = MV_FG_OpenDevice(hinterface, (unsigned int)nDevicelndex, &Device);
if (MV_FG_SUCCESS != nRet)

{
printf("Open No.%d device failed! %#x\n", nDevicelndex, nRet);
hDevice = NULL;
break;

}

// Register the exception information callback function of the device.
//nRet = MV_FG_RegisterExceptionCallBack(hDevice, ExceptionCb, hDevice);
//if (MV_FG_SUCCESS != nRet)

1

// printf("Register device exception callback failed'\n");
// break;

/1}

// Disable trigger mode.
nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
if (MV_FG_SUCCESS != nRet)
{
printf("Turn off trigger mode failed! %#x\n", nRet);
break;

}

// Get the number of stream channels.

unsigned int nStreamNum = 0;

nRet = MV_FG_GetNumStreams(hDevice, &StreamNum);
if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)

{

printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);

72

Frame Grabber SDK (Windows-C) Developer Guide

break;
}

// Enable stream channel (currently only one stream channel is supported at a time).
nRet = MV_FG_OpenStream(hDevice, 0, &Stream);
if (MV_FG_SUCCESS != nRet)
{
printf("Open stream failed! %#x\n", nRet);
break;

}

// Register the exception information callback function of the stream channel.
//nRet = MV_FG_RegisterExceptionCallBack(hStream, ExceptionCb, hStream);
//if (MV_FG_SUCCESS != nRet)

1

// printf("Register stream exception callback failed!\n");
// break;

/1}

// Set the number of internal buffers for the SDK.
nRet = MV_FG_SetBufferNum(hStream, BUFFER_NUMBER);
if (MV_FG_SUCCESS != nRet)
{
printf("Set buffer number failed! %#x\n", nRet);
break;

}

Callback_User stUerParam;
memset(&stUerParam, 0, sizeof(Callback_User));
stUerParam.hDevice = hDevice;

// Register the frame buffer information callback function.
nRet = MV_FG_RegisterFrameCallBack(hStream, FrameCb, &stUerParam);
if (MV_FG_SUCCESS != nRet)
{
printf("Register frame callback failed! %#x\n", nRet);
break;

}

// Start image acquisition.

nRet = MV_FG_StartAcquisition(hStream);

if (MV_FG_SUCCESS != nRet)

{
printf("Start acquistion failed! %#x\n", nRet);
return nRet;

}

printf("Press any key to stop acquisition.\n");
WaitForKeyPress();

// Stop image acquisition.

73

Frame Grabber SDK (Windows-C) Developer Guide

nRet = MV_FG_StopAcquisition(hStream);
if (MV_FG_SUCCESS != nRet)

{
printf("Stop acquisition failed! %#x\n", nRet);
if (stUerParam.stSaveJpegInfo.pJpgBuf)
{
free(stUerParam.stSaveJpeginfo.pJpgBuf);
stUerParam.stSaveJpeginfo.pJpgBuf = NULL;
Y
return nRet;
}
if (stUerParam.stSaveJpeginfo.pJpgBuf)
{
free(stUerParam.stSaveJpegInfo.pJpgBuf);
stUerParam.stSaveJpeglinfo.pJpgBuf = NULL;
}
} while (0);

// Disable stream channel.
if (NULL != hStream)

{
nRet = MV_FG_CloseStream(hStream);
if (MV_FG_SUCCESS != nRet)
{
printf("Close stream failed! %#x\n", nRet);
}
hStream = NULL;
}

// Close the device.
if (NULL != hDevice)

{
nRet = MV_FG_CloseDevice(hDevice);
if (MV_FG_SUCCESS != nRet)
{
printf("Close device failed! %#x\n", nRet);
}
hDevice = NULL;
}

// Close the frame grabber.
if (NULL !'= hinterface)

{
nRet = MV_FG_Closelnterface(hinterface);
if (MV_FG_SUCCESS != nRet)
{
printf("Close interface failed! %#x\n", nRet);
}
hinterface = NULL;
}

74

Frame Grabber SDK (Windows-C) Developer Guide

printf("Press any key to exit.\n");
WaitForKeyPress();

return O;

A.2 Acquire Images with Internal Buffers

The following sample codes show how to acquire images with internal buffers of the SDK.
#include <stdio.h>

#include <Windows.h>

#include <process.h>

#include <conio.h>

#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define FILE_NAME_LEN 256 // The maximum length of file name
#define SAVE_IMAGE_NUM 10 // The maximum number of saved images
#define TIMEOUT 1000 // Timeout; unit: millisecond (ms)
bool g_bExit = false; // Stop acquisition
// Wait for key press.
void WaitForKeyPress(void)
{

while(!_kbhit())

{

Sleep(10);
}
_getch();

}

// Clear residual data from stdin
void ClearStdin(void)

{
char c ="\0}
while (1)
{
c = getchar();
if (\n'==c || EOF == ¢)
{
break;
}
}
}

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)

{
switch(enExceptionType)

75

Frame Grabber SDK (Windows-C) Developer Guide

{
case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
{
printf("Exception: Interface Disconnected!\n");
break;
}
case EXCEPTION_TYPE_DEVICE_DISCONNECT:
{
printf("Exception: Device Disconnected!\n");
break;
}
case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
{
printf("Exception: Abnormal Image'\n");
break;
}
case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
{
printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
break;
}
case EXCEPTION_TYPE_STREAM_DISCONNECTED:
{
printf("Exception: Stream Disconnected!\n");
break;
}
default:
{
printf("Unknown Exception\n");
break;
}
}

// Save the original BMP image data.
void SaveBitimage(unsigned char* pBitMapBuf, unsigned int nBufferSize)

if (NULL != pBitMapBuf && 0 < nBufferSize)

char szFileName[FILE_NAME_LEN] ={0};
FILE* plmageFile = NULL;

SYSTEMTIME sys;

GetLocalTime(&sys);

sprintf_s(szFileName, FILE_NAME_LEN, "Image_%04d%02d%02d%02d%02d%02d%04d.bmp",
sys.wYear, sys.wMonth,

sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);

if (0 != fopen_s(&plmageFile, szFileName, "wb")) || (NULL == plmageFile))

76

Frame Grabber SDK (Windows-C) Developer Guide

{
}

return;

fwrite(pBitMapBuf, 1, nBufferSize, plmageFile);
fclose(plmageFile);

}

// Image acquisition thread.
unsigned int __stdcall GrabbingThread(void* pUser)

if (pUser)

{
STREAMHANDLE hStream = (STREAMHANDLE)pUser;
MV_FG_BUFFER_INFO stFramelnfo={0}; // Image information
int nRet = 0;

MV_FG_SAVE_BITMAP_INFO stSaveBitmaplInfo = {0}; // BMP image saving information
memset(&stSaveBitmaplnfo, 0, sizeof(MV_FG_SAVE_BITMAP_INFO));

// Start image acquisition.
nRet = MV_FG_StartAcquisition(hStream);
if (MV_FG_SUCCESS != nRet)

{
printf("Start acquistion failed! %#x\n", nRet);
return nRet;

}

g_bExit = false;

while ('g_bExit)

// Get the buffer information of a frame.
nRet = MV_FG_GetFrameBuffer(hStream, &stFramelnfo, TIMEOUT);
if (MV_FG_SUCCESS != nRet)

{
printf("Get frame buffer info failed! %#x\n", nRet);
continue;

}

else

{

printf("FrameNumber:%2164d%, Width:%d, Height:%d\n", stFramelnfo.nFramelD,
stFramelnfo.nWidth, stFramelnfo.nHeight);
if ((stFramelnfo.pBuffer) && (0 < stFramelnfo.nFilledSize))

{

stSaveBitmaplnfo.stinputimagelnfo.plmageBuf = (unsigned
char*)stFramelnfo.pBuffer;

stSaveBitmaplInfo.stinputimagelnfo.nimageBufLen = stFramelnfo.nFilledSize;

stSaveBitmapinfo.stinputimagelnfo.nHeight = stFramelnfo.nHeight;

stSaveBitmaplInfo.stinputimagelnfo.nWidth = stFramelnfo.nWidth;

stSaveBitmaplInfo.stinputimagelnfo.enPixelType = stFramelnfo.enPixelType;

unsigned int nSize = stFramelnfo.nHeight * stFramelnfo.nWidth * 4;

77

Frame Grabber SDK (Windows-C) Developer Guide

if (stSaveBitmapInfo.nBmpBufSize < nSize)

{
if (stSaveBitmapInfo.pBmpBuf)
{
free (stSaveBitmapinfo.pBmpBuf);
stSaveBitmapinfo.pBmpBuf = NULL;
}
stSaveBitmaplInfo.pBmpBuf = (unsigned char*)malloc(nSize);
if (NULL == stSaveBitmapInfo.pBmpBuf)
{
printf("malloc pConvertData fail'\n");
nRet = MV_FG_ERR_RESOURCE_EXHAUSTED;
break;
}
stSaveBitmapInfo.nBmpBufSize = nSize;
}

stSaveBitmapInfo.nBmpBuflLen = 0;
stSaveBitmaplInfo.enCfaMethod = MV_FG_CFA_METHOD_OPTIMAL;
nRet = MV_FG_SaveBitmap(hStream, &stSaveBitmaplnfo);

if (MV_FG_SUCCESS != nRet)

{

}

else

{

printf("MV_FG_SaveBitmap info failed! %#x\n", nRet);

SaveBitlmage(stSaveBitmapInfo.pBmpBuf,
stSaveBitmapInfo.nBmpBufLen);

}
}

// Insert the buffer back to the input queue.
nRet = MV_FG_ReleaseFrameBuffer(hStream, &stFramelnfo);
if (MV_FG_SUCCESS != nRet)

{
printf("Release frame buffer failed! %#x\n", nRet);
break;
}
}
if (stSaveBitmaplnfo.pBmpBuf)
{
free(stSaveBitmaplInfo.pBmpBuf);
stSaveBitmapInfo.pBmpBuf = NULL;
}

// Stop image acquisition.

nRet = MV_FG_StopAcquisition(hStream);
if (MV_FG_SUCCESS != nRet)

{

78

Frame Grabber SDK (Windows-C) Developer Guide

printf("Stop acquisition failed! %#x\n", nRet);
return nRet;

}

return MV_FG_SUCCESS;
}

// Print frame grabber information.
bool Printinterfacelnfo(unsigned int ninterfaceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < ninterfaceNum; i++)

{
MV_FG_INTERFACE_INFO stinterfacelnfo ={0 };

nRet = MV_FG_GetInterfacelnfo(i, &stInterfacelnfo);

if (MV_FG_SUCCESS != nRet)

{
printf("Get info of No.%d interface failed! %#x\n", i, nRet);
return false;

}

switch (stinterfacelnfo.nTLayerType)

{
case MV_FG_CXP_INTERFACE:

{
printf("[CXP]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCXPlIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCXPlIfacelnfo.chSerialNumber);

break;
}
case MV_FG_GEV_INTERFACE:
{

printf("[GEVINo.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chinterfacelD,
stinterfacelnfo.Ifacelnfo.stGEVIfacelnfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_INTERFACE:
{

printf("[CML]No.%d Interface:
\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chinterfacelD,

79

Frame Grabber SDK (Windows-C) Developer Guide

stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chSerialNumber);

break;
}
default:
{
printf("Unknown interface type.\n");
return false;
}

}

return true;

}

// Print device information.
bool PrintDevicelnfo(IFHANDLE hinterface, unsigned int nDeviceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < nDeviceNum; i++)
MV_FG_DEVICE_INFO stDevicelnfo = {0 };

nRet = MV_FG_GetDevicelnfo(hInterface, i, &stDevicelnfo);
if (MV_FG_SUCCESS != nRet)
{
printf("Get info of No.%d device failed! %#x\n", i, nRet);
return false;

}

switch (stDevicelnfo.nDevType)

{
case MV_FG_CXP_DEVICE:

{
printf("[CXP]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCXPDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCXPDevinfo.chModelName,
stDevicelnfo.Devinfo.stCXPDevinfo.chSerialNumber);

break;
}
case MV_FG_GEV_DEVICE:
{

printf("[GEV]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stGEVDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stGEVDevInfo.chModelName,
stDevicelnfo.Devinfo.stGEVDevinfo.chSerialNumber);

break;

}
case MV_FG_CAMERALINK_DEVICE:

80

Frame Grabber SDK (Windows-C) Developer Guide

{
printf("[CML]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCMLDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCMLDevInfo.chModelName,
stDevicelnfo.DevInfo.stCMLDevInfo.chSerialNumber);

break;
}
default:
{
printf("Unknown device type.\n");
return false;
}
}
}
return true;
}
int main()
{
int nRet = 0;
IFHANDLE hinterface = NULL;
DEVHANDLE hDevice = NULL;
STREAMHANDLE hStream = NULL;
do
{

// Enumerate frame grabbers.
bool bChanged = false;
nRet = MV_FG_UpdatelnterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update interface list failed! %#x\n", nRet);
break;

}

// Get the number of frame grabbers.

unsigned int ninterfaceNum = 0;

nRet = MV_FG_GetNuminterfaces(&nInterfaceNum);

if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)

{
printf("No interface found! return = %d, number = %d\n", nRet, ninterfaceNum);
break;

}

// Display frame grabber information.
if (false == PrintInterfacelnfo(nInterfaceNum))

{
break;

81

Frame Grabber SDK (Windows-C) Developer Guide

}

// Select frame grabber.

int ninterfacelndex = -1;
printf("Select an interface: ");
scanf_s("%d", &niInterfacelndex);
ClearStdin();

if (nIinterfacelndex < 0 || ninterfacelndex >= (int)ninterfaceNum)
{

printf("Invalid interface index.\nQuit.\n");

break;

}

// Open the frame grabber and get the frame grabber handle.
nRet = MV_FG_Openinterface((unsigned int)ninterfacelndex, &hinterface);
if (MV_FG_SUCCESS != nRet)
{
printf("Open No.%d interface failed! %#x\n", ninterfacelndex, nRet);
break;

}

// Register the exception information callback function of the frame grabber.
//nRet = MV_FG_RegisterExceptionCallBack(hInterface, ExceptionCb, hinterface);
//if (MV_FG_SUCCESS != nRet)

/1

// printf("Register interface exception callback failed'\n");
// break;

/1}

// Enumerate cameras of the frame grabber.
nRet = MV_FG_UpdateDeviceList(hInterface, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update device list failed! %#x\n", nRet);
break;
}

// Get the number of devices.

unsigned int nDeviceNum = 0;

nRet = MV_FG_GetNumbDevices(hinterface, &DeviceNum);

if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)

{
printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
break;

}

// Display device information.
if (false == PrintDevicelnfo(hInterface, nDeviceNum))

{
break;

82

Frame Grabber SDK (Windows-C) Developer Guide

}

// Select device.

int nDevicelndex = -1;
printf("Select a device: ");
scanf_s("%d", &nDevicelndex);
ClearStdin();

if (nDevicelndex < 0 || nDevicelndex >= (int)nDeviceNum)
{

printf("Invalid device index.\nQuit.\n");

break;

}

// Open the device and get the device handle.
nRet = MV_FG_OpenDevice(hInterface, (unsigned int)nDevicelndex, &Device);
if (MV_FG_SUCCESS != nRet)

{
printf("Open No.%d device failed! %#x\n", nDevicelndex, nRet);
hDevice = NULL;
break;

}

// Register the exception information callback function of the device.
//nRet = MV_FG_RegisterExceptionCallBack(hDevice, ExceptionCb, hDevice);
//if (MV_FG_SUCCESS != nRet)

1

// printf("Register device exception callback failed'\n");
// break;

/1}

// Disable the trigger mode.
nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
if (MV_FG_SUCCESS != nRet)
{
printf("Turn off trigger mode failed! %#x\n", nRet);
break;

}

// Get the number of stream channels.

unsigned int nStreamNum = 0;

nRet = MV_FG_GetNumStreams(hDevice, &StreamNum);

if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)

{
printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
break;

}

// Open stream channel (currently only one stream channel is supported at a time).
nRet = MV_FG_OpenStream(hDevice, 0, & Stream);
if (MV_FG_SUCCESS != nRet)

83

Frame Grabber SDK (Windows-C) Developer Guide

printf("Open stream failed! %#x\n", nRet);
break;
}

// Register the exception information callback function of the stream channel.
//nRet = MV_FG_RegisterExceptionCallBack(hStream, ExceptionCb, hStream);
//if (MV_FG_SUCCESS != nRet)

1

// printf("Register stream exception callback failed!\n");
// break;

/1}

// Set the number of internal buffers for the SDK.
nRet = MV_FG_SetBufferNum(hStream, BUFFER_NUMBER);
if (MV_FG_SUCCESS != nRet)
{
printf("Set buffer number failed! %#x\n", nRet);
break;

}

// Create thread for image acquisition.
void* hThreadHandle = (void*)_beginthreadex(NULL, 0, GrabbingThread, hStream, 0, NULL);
if (NULL == hThreadHandle)
{
printf("Create thread failed'\n");
break;

}

printf("Press any key to stop acquisition.\n");
WaitForKeyPress();

// Stop image acquisition thread.
g_bEXxit = true;
WaitForSingleObject(hThreadHandle, INFINITE);
CloseHandle(hThreadHandle);
hThreadHandle = NULL;

} while (0);

// Close stream channel.
if (NULL != hStream)

{
nRet = MV_FG_CloseStream(hStream);
if (MV_FG_SUCCESS != nRet)
{
printf("Close stream failed! %#x\n", nRet);
}
hStream = NULL;
}

// Close the device.

84

Frame Grabber SDK (Windows-C) Developer Guide

if (NULL != hDevice)

{
nRet = MV_FG_CloseDevice(hDevice);
if (MV_FG_SUCCESS != nRet)
{
printf("Close device failed! %#x\n", nRet);
}
hDevice = NULL;
}

// Close the frame grabber.
if (NULL != hinterface)

{
nRet = MV_FG_Closelnterface(hinterface);
if (MV_FG_SUCCESS != nRet)
{
printf("Close interface failed! %#x\n", nRet);
}
hinterface = NULL;
}
printf("Press any key to exit.\n");
WaitForKeyPress();
return 0;

A.3 Acquire Images with User Registering Buffers

The following sample codes show how to acquire images using buffers registered to stream channels
by the user.

#include <stdio.h>

#include <Windows.h>

#include <process.h>

#include <conio.h>

#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers

#define FILE_ZNAME_LEN 256 // The maximum length of file name
#define SAVE_IMAGE_NUM 10 // The maximum number of saved images
#define TIMEOUT 1000 // Timeout; unit: millisecond (ms)

bool g_bExit = false; // Stop acquisition

// Wait for key press.

void WaitForKeyPress(void)

{

while(!_kbhit())

{
Sleep(10);

85

Frame Grabber SDK (Windows-C) Developer Guide

}
_getch();
}

// Clear residual data from stdin.
void ClearStdin(void)

{
char ¢ ="\0}
while (1)
{
c = getchar();
if (\n'==c || EOF == ¢)
{
break;
}
}
}

// Save the original image data.
void SaveRawlmage(int nlmageNo, MV_FG_BUFFER_INFO* pstimagelnfo)
{

if (pstimagelnfo)
{
char szFileName[FILE_NAME_LEN] ={ 0 };

sprintf_s(szFileName, FILE_NAME_LEN, "Image_w%d_h%d_n%d.raw", pstimagelnfo->nWidth,
pstimagelnfo->nHeight, nimageNo);

FILE* plmageFile = NULL;
if (0 != fopen_s(&plmageFile, szFileName, "wb")) || (NULL == plmageFile))
{

return;

}

fwrite(pstimagelnfo->pBuffer, 1, pstimagelnfo->nFilledSize, pimageFile);
fclose(plmageFile);

}

// Image acquisition thread.
unsigned int __stdcall GrabbingThread(void* pUser)

{
if (pUser)
STREAMHANDLE hStream = (STREAMHANDLE)pUser;
BUFFERHANDLE hBuffer = NULL;
MV_FG_BUFFER_INFO stFramelnfo={0}; // Image information
int nSavelmage = 0; // Number of saved images
int nRet = 0;

86

Frame Grabber SDK (Windows-C) Developer Guide

// Start image acquisition.
nRet = MV_FG_StartAcquisition(hStream);
if (MV_FG_SUCCESS != nRet)

{
printf("Start acquistion failed! %#x\n", nRet);
return nRet;

}

g_bExit = false;

while ('g_bExit)
{
// Get the buffer handle of a frame.
nRet = MV_FG_GetlmageBuffer(hStream, &hBuffer, TIMEOUT);
if (MV_FG_SUCCESS != nRet)
{
printf("Get image buffer failed! %#x\n", nRet);
continue;

}

// Get image information.

nRet = MV_FG_GetBufferInfo(hBuffer, &stFramelnfo);
if (MV_FG_SUCCESS != nRet)

{

}

else

{

printf("Get image info failed! %#x\n", nRet);

printf("FrameNumber:%2164d%, Width:%d, Height:%d\n", stFramelnfo.nFramelD,
stFramelnfo.nWidth, stFramelnfo.nHeight);

if (nSavelmage < SAVE_IMAGE_NUM)
{

}

SaveRawlmage(++nSavelmage, &stFramelnfo);

}

// Insert the buffer back to the input queue.
nRet = MV_FG_QueueBuffer(hBuffer);
if (MV_FG_SUCCESS != nRet)
{
printf("Queue buffer failed! %#x\n", nRet);
break;

}

// Stop image acquisition.

nRet = MV_FG_StopAcquisition(hStream);

if (MV_FG_SUCCESS != nRet)

{
printf("Stop acquisition failed! %#x\n", nRet);
return nRet;

87

Frame Grabber SDK (Windows-C) Developer Guide

}

return MV_FG_SUCCESS;
}

// Print frame grabber information.
bool Printinterfacelnfo(unsigned int ninterfaceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < ninterfaceNum; i++)

{
MV_FG_INTERFACE_INFO stinterfacelnfo ={0 };

nRet = MV_FG_GetInterfacelnfo(i, &stInterfacelnfo);

if (MV_FG_SUCCESS != nRet)

{
printf("Get info of No.%d interface failed! %#x\n", i, nRet);
return false;

}

switch (stInterfacelnfo.nTLayerType)

{
case MV_FG_CXP_INTERFACE:

{
printf("[CXP]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCXPlIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCXPlIfacelnfo.chSerialNumber);

break;
}
case MV_FG_GEV_INTERFACE:
{

printf("[GEVINo0.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chinterfacelD,
stinterfacelnfo.Ifacelnfo.stGEVIfacelnfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_INTERFACE:
{

printf("[CML]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chSerialNumber);

break;

88

Frame Grabber SDK (Windows-C) Developer Guide

default:

printf("Unknown interface type.\n");
return false;

}

return true;

}

// Print device information.
bool PrintDevicelnfo(IFHANDLE hinterface, unsigned int nDeviceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < nDeviceNum; i++)
{
MV_FG_DEVICE_INFO stDevicelnfo ={0};

nRet = MV_FG_GetDevicelnfo(hInterface, i, &stDevicelnfo);
if (MV_FG_SUCCESS != nRet)
{
printf("Get info of No.%d device failed! %#x\n", i, nRet);
return false;

}

switch (stDevicelnfo.nDevType)

{
case MV_FG_CXP_DEVICE:

{
printf("[CXP]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCXPDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCXPDevinfo.chModelName,
stDevicelnfo.Devinfo.stCXPDevinfo.chSerialNumber);

break;
}
case MV_FG_GEV_DEVICE:
{

printf("[GEVINo.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stGEVDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stGEVDevinfo.chModelName,
stDevicelnfo.DevInfo.stGEVDevinfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_DEVICE:
{

printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,

89

Frame Grabber SDK (Windows-C) Developer Guide

stDevicelnfo.Devinfo.stCMLDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCMLDevInfo.chModelName,
stDevicelnfo.Devinfo.stCMLDevInfo.chSerialNumber);

break;
}
default:
{
printf("Unknown device type.\n");
return false;
}
}
}
return true;
}
int main()
{
int nRet = 0;
IFHANDLE hinterface = NULL;
DEVHANDLE hDevice = NULL;

STREAMHANDLE hStream = NULL;
BUFFERHANDLE hBuffer[BUFFER_NUMBER] = {0 };
void* pBuffer[BUFFER_NUMBER] = {0 };

do
{
// Enumerate frame grabbers.
bool bChanged = false;
nRet = MV_FG_UpdatelnterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &b Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update interface list failed! %#x\n", nRet);
break;

}

// Get the number of frame grabbers.

unsigned int ninterfaceNum = 0;

nRet = MV_FG_GetNuminterfaces(&nInterfaceNum);

if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)

{
printf("No interface found! return = %d, number = %d\n", nRet, ninterfaceNum);
break;

}

// Display frame grabber information.
if (false == PrintInterfacelnfo(ninterfaceNum))

{
}

break;

920

Frame Grabber SDK (Windows-C) Developer Guide

// Select frame grabber.

int ninterfacelndex = -1;
printf("Select an interface: ");
scanf_s("%d", &nInterfacelndex);
ClearStdin();

if (nInterfacelndex < 0 || ninterfacelndex >= (int)ninterfaceNum)
{

printf("Invalid interface index.\nQuit.\n");

break;

}

// Open the frame grabber and get the frame grabber handle.
nRet = MV_FG_Openinterface((unsigned int)ninterfacelndex, &hinterface);
if (MV_FG_SUCCESS != nRet)
{
printf("Open No.%d interface failed! %#x\n", ninterfacelndex, nRet);
break;

}

// Enumerate cameras of the frame grabber.
nRet = MV_FG_UpdateDeviceList(hInterface, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update device list failed! %#x\n", nRet);
break;

}

// Get the number of devices.

unsigned int nDeviceNum = 0;

nRet = MV_FG_GetNumDevices(hInterface, & DeviceNum);

if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)

{
printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
break;

}

// Display device information.
if (false == PrintDevicelnfo(hInterface, nDeviceNum))

{
}

// Select the device.

int nDevicelndex = -1;
printf("Select a device: ");
scanf_s("%d", &nDevicelndex);
ClearStdin();

break;

if (nDevicelndex < 0 || nDevicelndex >= (int)nDeviceNum)

91

Frame Grabber SDK (Windows-C) Developer Guide

printf("Invalid device index.\nQuit.\n");
break;
}

// Open the device and get the device handle.
nRet = MV_FG_OpenDevice(hinterface, (unsigned int)nDevicelndex, &Device);
if (MV_FG_SUCCESS != nRet)

{
printf("Open No.%d device failed! %#x\n", nDevicelndex, nRet);
hDevice = NULL;
break;

}

// Disable trigger mode.
nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
if (MV_FG_SUCCESS != nRet)
{
printf("Turn off trigger mode failed! %#x\n", nRet);
break;
}

// Get the number of stream channels.

unsigned int nStreamNum = 0;

nRet = MV_FG_GetNumStreams(hDevice, &StreamNum);

if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)

{
printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
break;

}

// O stream channel (currently only one stream channel is supported at a time).
nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
if (MV_FG_SUCCESS != nRet)
{
printf("Open stream failed! %#x\n", nRet);
break;
}

// Get the image size of the stream channel.
unsigned int nPayloadSize = 0;
nRet = MV_FG_GetPayloadSize(hStream, &nPayloadSize);
if (MV_FG_SUCCESS != nRet)
{
printf("Get payload size failed! %#x\n", nRet);
break;
}

// Register buffer to stream channel.
for (unsigned int i = 0; i < BUFFER_NUMBER; i++)

92

Frame Grabber SDK (Windows-C) Developer Guide

// Allocate image buffers.
pBuffer[i] = malloc(nPayloadSize);
if (NULL == pBuffer[i])

{
printf("Allocate buffer failed'\n");
nRet = MV_FG_ERR_OUT_OF_MEMORY;
break;

}

// Register buffer to SDK.
nRet = MV_FG_AnnounceBuffer(hStream, pBuffer[i], nPayloadSize, NULL, &(hBuffer[i]));
if (MV_FG_SUCCESS != nRet)

{ printf("Announce buffer failed! %#x\n", nRet);
break;
}
}
if (MV_FG_SUCCESS != nRet)
{ break;
}

// Refresh the buffer queue for image acquisition.
nRet = MV_FG_FlushQueue(hStream, MV_FG_BUFFER_QUEUE_ALL_TO_INPUT);
if (MV_FG_SUCCESS != nRet)
{
printf("Flush queue: all to input failed! %#x\n", nRet);
break;

}

// Create thread for image acquisition.
void* hThreadHandle = (void*)_beginthreadex(NULL, 0, GrabbingThread, hStream, 0, NULL);
if (NULL == hThreadHandle)
{
printf("Create thread failed'\n");
break;

}

printf("Press any key to stop acquisition.\n");
WaitForKeyPress();

// Stop image acquisition thread.
g_bExit = true;
WaitForSingleObject(hThreadHandle, INFINITE);
CloseHandle(hThreadHandle);
hThreadHandle = NULL;

} while (0);

// Release resources.
if (NULL != hStream)

{

93

Frame Grabber SDK (Windows-C) Developer Guide

}

// Clear buffer queues.

nRet = MV_FG_FlushQueue(hStream, MV_FG_BUFFER_QUEUE_ALL_DISCARD);
if (MV_FG_SUCCESS != nRet)

{

}

// Revoke and release registered buffers.
for (unsigned int i = 0; i < BUFFER_NUMBER; i++)

printf("Flush buffer queue failed! %#x\n", nRet);

{
if (NULL != hBuffer[i])
{
nRet = MV_FG_RevokeBuffer(hStream, hBufferli], NULL, NULL);
if (MV_FG_SUCCESS != nRet)
{
printf("Revoke No.%d buffer failed! %#x\n", i, nRet);
}
hBuffer[i] = NULL;
}
if (NULL != pBufferl[i])
{
free(pBufferli]);
pBuffer[i] = NULL;
}
}

// Close the stream channel.

nRet = MV_FG_CloseStream(hStream);
if (MV_FG_SUCCESS != nRet)

{

}
hStream = NULL;

printf("Close stream failed! %#x\n", nRet);

// Close the device.
if (NULL != hDevice)

{

}

nRet = MV_FG_CloseDevice(hDevice);
if (MV_FG_SUCCESS != nRet)
{

}
hDevice = NULL;

printf("Close device failed! %#x\n", nRet);

// Close the frame grabber.
if (NULL != hinterface)

{

nRet = MV_FG_Closelnterface(hinterface);

94

Frame Grabber SDK (Windows-C) Developer Guide

if (MV_FG_SUCCESS != nRet)
{

}
hinterface = NULL;

printf("Close interface failed! %#x\n", nRet);

}

printf("Press any key to exit.\n");
WaitForKeyPress();

return O;

A.4 Convert Pixel Format

The following sample codes show how to convert the format of acquired images to a desired format.
#include <stdio.h>

#include <Windows.h>

#include <process.h>

#include <conio.h>

#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define FILE_NAME_LEN 256 // The maximum length of file name
#define SAVE_IMAGE_NUM 10 // The maximum number of saved images
#define TIMEOUT 1000 // Timeout; unit: millisecond (ms)
bool g_bExit = false; // Stop acquisition
// Wait for key press.
void WaitForKeyPress(void)
{

while(!_kbhit())

{

Sleep(10);
}
_getch();

}

// Clear residual data from stdin.
void ClearStdin(void)

{

char c ='\0}

while (1)

{
c = getchar();
if (\n'==c || EOF ==¢)
{

}

break;

95

Frame Grabber SDK (Windows-C) Developer Guide

}

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)

{

}

switch(enExceptionType)

{
case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
{
printf("Exception: Interface Disconnected!\n");
break;
}
case EXCEPTION_TYPE_DEVICE_DISCONNECT:
{
printf("Exception: Device Disconnected!\n");
break;
}
case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
{
printf("Exception: Abnormal Image'\n");
break;
}
case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
{
printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
break;
}
case EXCEPTION_TYPE_STREAM_DISCONNECTED:
{
printf("Exception: Stream Disconnected!\n");
break;
}
default:
{
printf("Unknown Exception!\n");
break;
}
}

// Save the original BMP image data.
void SaveBitimage(unsigned char* pBitMapBuf, unsigned int nBufferSize)

{

if (NULL != pBitMapBuf && 0 < nBufferSize)
{
char szFileName[FILE_NAME_LEN] ={0};
FILE* plmageFile = NULL;
SYSTEMTIME sys;
GetLocalTime(&sys);

96

Frame Grabber SDK (Windows-C) Developer Guide

sprintf_s(szFileName, FILE_NAME_LEN, "Image_%04d%02d%02d%02d%02d%02d%04d.bmp",
sys.wYear, sys.wMonth,
sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);

if ((0 != fopen_s(&plmageFile, szFileName, "wb")) || (NULL == plmageFile))
{

return;

}

fwrite(pBitMapBuf, 1, nBufferSize, plmageFile);
fclose(plmageFile);

}

bool IsColorPixelFormat(MV_FG_PIXEL_TYPE enPixelType)
{
switch(enPixelType)
{
case MV_FG_PIXEL_TYPE_RGBAB8_Packed:
case MV_FG_PIXEL_TYPE_BGRAB8_Packed:
case MV_FG_PIXEL_TYPE_BayerGRS:
case MV_FG_PIXEL_TYPE_BayerRG8:
case MV_FG_PIXEL_TYPE_BayerGBS8:
case MV_FG_PIXEL_TYPE_BayerBG8:
case MV_FG_PIXEL_TYPE_BayerGB10:
case MV_FG_PIXEL_TYPE_BayerGB10_Packed:
case MV_FG_PIXEL_TYPE_BayerBG10:
case MV_FG_PIXEL_TYPE_BayerBG10_Packed:
case MV_FG_PIXEL_TYPE_BayerRG10:
case MV_FG_PIXEL_TYPE_BayerRG10_Packed:
case MV_FG_PIXEL_TYPE_BayerGR10:
case MV_FG_PIXEL_TYPE_BayerGR10_Packed:
case MV_FG_PIXEL_TYPE_BayerGB12:
case MV_FG_PIXEL_TYPE_BayerGB12_Packed:
case MV_FG_PIXEL_TYPE_BayerBG12:
case MV_FG_PIXEL_TYPE_BayerBG12_Packed:
case MV_FG_PIXEL_TYPE_BayerRG12:
case MV_FG_PIXEL_TYPE_BayerRG12_Packed:
case MV_FG_PIXEL_TYPE_BayerGR12:
case MV_FG_PIXEL_TYPE_BayerGR12_Packed:
case MV_FG_PIXEL_TYPE_BayerGR16:
case MV_FG_PIXEL_TYPE_BayerRG16:
case MV_FG_PIXEL_TYPE_BayerGB16:
case MV_FG_PIXEL_TYPE_BayerBG16:
case MV_FG_PIXEL_TYPE_YUV422_Packed:
case MV_FG_PIXEL_TYPE_YUV422_YUYV_Packed:
return true;
default:
return false;
}

97

Frame Grabber SDK (Windows-C) Developer Guide

// Determine whether the image is in monochrome format.
bool IsMonoPixelFormat(MV_FG_PIXEL_TYPE enPixelType)

{

switch(enPixelType)

{

case MV_FG_PIXEL_TYPE_Mono10:
case MV_FG_PIXEL_TYPE_Mono10_Packed:
case MV_FG_PIXEL_TYPE_Mono12:
case MV_FG_PIXEL_TYPE_Mono12_Packed:
case MV_FG_PIXEL_TYPE_Mono16:

return true;

default:

}
}

return false;

// Image acquisition thread.
unsigned int __stdcall GrabbingThread(void* pUser)

{

if (pUser)

{

STREAMHANDLE hStream = (STREAMHANDLE)pUser;

MV_FG_BUFFER_INFO stFramelnfo={0}; // Image information

int nRet = 0;

MV_FG_CONVERT_PIXEL_INFO stConvertPixellnfo = {0}; // Image conversion information
memset(&stConvertPixellnfo, 0, sizeof(MV_FG_CONVERT_PIXEL_INFO));

// Start image acquisition.
nRet = MV_FG_StartAcquisition(hStream);
if (MV_FG_SUCCESS != nRet)

{
printf("Start acquistion failed! %#x\n", nRet);
return nRet;

}

g_bExit = false;

while ('g_bExit)

// Get the buffer information of a frame.
nRet = MV_FG_GetFrameBuffer(hStream, &stFramelnfo, TIMEOUT);
if (MV_FG_SUCCESS != nRet)

{ printf("Get frame buffer info failed! %#x\n", nRet);
continue;

}

else

{

printf("FrameNumber:%2164d%, Width:%d, Height:%d\n", stFramelnfo.nFramelD,

stFramelnfo.nWidth, stFramelnfo.nHeight);

if ((stFramelnfo.pBuffer) && (0 < stFramelnfo.nFilledSize))

98

Frame Grabber SDK (Windows-C) Developer Guide

MV_FG_PIXEL_TYPE enDstPixelType = MV_FG_PIXEL_TYPE_Undefined;
unsigned int nChannelNum = 0;

char szFileName[FILE_NAME_LEN] ={0};

FILE* plmageFile = NULL;

SYSTEMTIME sys;

GetlLocalTime(&sys);

// If in color format, convert to RGBS.
if (IsColorPixelFormat(stFramelnfo.enPixelType))
{
nChannelNum = 3;
enDstPixelType = MV_FG_PIXEL_TYPE_RGB8_Packed;
sprintf_s(szFileName, FILE_NAME_LEN,
"After_%04d%02d%02d%02d%02d%02d%03d.rgb", sys.wYear, sys.wMonth,
sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);
}

//1f in monochrome format, convert to Mono8.
else if (IsMonoPixelFormat(stFramelnfo.enPixelType))

{

nChannelNum = 1;
enDstPixelType = MV_FG_PIXEL_TYPE_Mono8;
sprintf_s(szFileName, FILE_NAME_LEN,
"After_%04d%02d%02d%02d%02d%02d%03d.gray", sys.wYear, sys.wMonth,
sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);
}

else

{
}

if (enDstPixelType != MV_FG_PIXEL_TYPE_Undefined)
{

printf("Don't need to convert'\n");

stConvertPixellnfo.stinputimagelnfo.plmageBuf = (unsigned
char*)stFramelnfo.pBuffer;

stConvertPixellnfo.stinputimagelnfo.nimageBuflLen =
stFramelnfo.nFilledSize;

stConvertPixellnfo.stinputimagelnfo.nHeight = stFramelnfo.nHeight;

stConvertPixellnfo.stinputimagelnfo.nWidth = stFramelnfo.nWidth;

stConvertPixellnfo.stinputimagelnfo.enPixelType =
stFramelnfo.enPixelType;

unsigned int nSize = stFramelnfo.nHeight * stFramelnfo.nWidth *
nChannelNum;
if (nSize > stConvertPixellnfo.stOutputimagelnfo.nimageBufSize)

{

if (stConvertPixellnfo.stOutputimagelnfo.plmageBuf)
{

free(stConvertPixellnfo.stOutputimagelnfo.plmageBuf);
stConvertPixellnfo.stOutputimagelnfo.plmageBuf = NULL;

99

Frame Grabber SDK (Windows-C) Developer Guide

}

stConvertPixellnfo.stOutputimagelnfo.plmageBuf = (unsigned
char*)malloc(nSize);

if (NULL == stConvertPixellnfo.stOutputimagelnfo.plmageBuf)

{
printf("malloc pConvertData fail'\n");
nRet = MV_FG_ERR_RESOURCE_EXHAUSTED;
break;

}

stConvertPixellnfo.stOutputimagelnfo.nlmageBufSize = nSize;

}

stConvertPixellnfo.stOutputimagelnfo.nlmageBuflLen = 0;
stConvertPixellnfo.stOutputimagelnfo.enPixelType = enDstPixel Type;
stConvertPixellnfo.enCfaMethod = MV_FG_CFA_METHOD_OPTIMAL;

nRet = MV_FG_ConvertPixelType(hStream, &stConvertPixellnfo);
if (MV_FG_SUCCESS != nRet)
{
printf("Convert Pixel Type fail' nRet [0x%x]\n", nRet);
continue;

}
if (0 != fopen_s(&plmageFile, szFileName, "wb")) || (NULL == plmageFile))
{

continue;

}

fwrite(stConvertPixellnfo.stOutputimagelnfo.plmageBuf, 1,
stConvertPixellnfo.stOutputimagelnfo.nimageBufLen, pimageFile);

fclose(plmageFile);

printf("Convert pixeltype succeed\n");

}

// Insert the buffer back to the input queue.
nRet = MV_FG_ReleaseFrameBuffer(hStream, &stFramelnfo);
if (MV_FG_SUCCESS != nRet)

{
printf("Release frame buffer failed! %#x\n", nRet);
break;
}
}
if (stConvertPixellnfo.stOutputimagelnfo.plmageBuf)
{
free(stConvertPixellnfo.stOutputimagelnfo.plmageBuf);
stConvertPixellnfo.stOutputimagelnfo.plmageBuf = NULL;
}

100

Frame Grabber SDK (Windows-C) Developer Guide

// Stop image acquisition.

nRet = MV_FG_StopAcquisition(hStream);

if (MV_FG_SUCCESS != nRet)

{
printf("Stop acquisition failed! %#x\n", nRet);
return nRet;

}

return MV_FG_SUCCESS;
}

// Print frame grabber information.
bool Printinterfacelnfo(unsigned int ninterfaceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < ninterfaceNum; i++)

{
MV_FG_INTERFACE_INFO stinterfacelnfo ={0 };

nRet = MV_FG_GetInterfacelnfo(i, &stInterfacelnfo);

if (MV_FG_SUCCESS != nRet)

{
printf("Get info of No.%d interface failed! %#x\n", i, nRet);
return false;

}

switch (stInterfacelnfo.nTLayerType)
{
case MV_FG_CXP_INTERFACE:
{
printf("[CXP]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chSerialNumber);

break;
}
case MV_FG_GEV_INTERFACE:
{

printf("[GEVINo.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chinterfacelD,
stinterfacelnfo.Ifacelnfo.stGEVIfacelnfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_INTERFACE:
{

101

Frame Grabber SDK (Windows-C) Developer Guide

printf("[CML]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chinterfacelD,
stinterfacelnfo.Ifacelnfo.stCMLIfacelnfo.chSerialNumber);

break;
}
default:
{
printf("Unknown interface type.\n");
return false;
}

}

return true;

}

// Print device information.
bool PrintDevicelnfo(IFHANDLE hinterface, unsigned int nDeviceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < nDeviceNum; i++)
MV_FG_DEVICE_INFO stDevicelnfo = {0 };

nRet = MV_FG_GetDevicelnfo(hInterface, i, &tDevicelnfo);
if (MV_FG_SUCCESS != nRet)
{
printf("Get info of No.%d device failed! %#x\n", i, nRet);
return false;

}

switch (stDevicelnfo.nDevType)

{
case MV_FG_CXP_DEVICE:

{
printf("[CXP]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCXPDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCXPDevinfo.chModelName,
stDevicelnfo.Devinfo.stCXPDevinfo.chSerialNumber);

break;
}
case MV_FG_GEV_DEVICE:
{

printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stGEVDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stGEVDevInfo.chModelName,

102

Frame Grabber SDK (Windows-C) Developer Guide

stDevicelnfo.Devinfo.stGEVDevInfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_DEVICE:
{

printf("[CML]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCMLDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCMLDevInfo.chModelName,
stDevicelnfo.DevInfo.stCMLDevInfo.chSerialNumber);

break;
}
default:
{
printf("Unknown device type.\n");
return false;
}
}
}
return true;
}
int main()
{
int nRet = 0;
IFHANDLE hinterface = NULL;
DEVHANDLE hDevice = NULL;
STREAMHANDLE hStream = NULL;
do
{

// Enumerate frame grabbers.
bool bChanged = false;
nRet = MV_FG_UpdatelnterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update interface list failed! %#x\n", nRet);
break;

}

// Get the number of frame grabbers.

unsigned int ninterfaceNum = 0;

nRet = MV_FG_GetNuminterfaces(&nInterfaceNum);

if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)

{
printf("No interface found! return = %d, number = %d\n", nRet, ninterfaceNum);
break;

103

Frame Grabber SDK (Windows-C) Developer Guide

// Display frame grabber information.
if (false == PrintInterfacelnfo(nInterfaceNum))

{
}

break;

// Select frame grabber.

int ninterfacelndex = -1;
printf("Select an interface: ");
scanf_s("%d", &niInterfacelndex);
ClearStdin();

if (nIinterfacelndex < 0 || ninterfacelndex >= (int)ninterfaceNum)
{

printf("Invalid interface index.\nQuit.\n");

break;
}

// Open the frame grabber and get the frame grabber handle.
nRet = MV_FG_Openlinterface((unsigned int)ninterfacelndex, &hlinterface);
if (MV_FG_SUCCESS != nRet)
{
printf("Open No.%d interface failed! %#x\n", ninterfacelndex, nRet);
break;

}

// Register the exception information callback function of the frame grabber.
//nRet = MV_FG_RegisterExceptionCallBack(hInterface, ExceptionCb, hinterface);
//if (MV_FG_SUCCESS != nRet)

I

// printf("Register interface exception callback failed'\n");
// break;

/1}

// Enumerate cameras of the frame grabber.
nRet = MV_FG_UpdateDeviceList(hInterface, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update device list failed! %#x\n", nRet);
break;

}

// Get the number of devices.

unsigned int nDeviceNum = 0;

nRet = MV_FG_GetNumDevices(hinterface, &DeviceNum);

if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)

{
printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
break;

104

Frame Grabber SDK (Windows-C) Developer Guide

// Display device information.
if (false == PrintDevicelnfo(hInterface, nDeviceNum))

{
}

// Select the device.

int nDevicelndex = -1;
printf("Select a device: ");
scanf_s("%d", &nDevicelndex);
ClearStdin();

break;

if (nDevicelndex < 0 || nDevicelndex >= (int)nDeviceNum)
{

printf("Invalid device index.\nQuit.\n");

break;
}

// Open the device and get the device handle.
nRet = MV_FG_OpenDevice(hInterface, (unsigned int)nDevicelndex, &Device);
if (MV_FG_SUCCESS != nRet)

{
printf("Open No.%d device failed! %#x\n", nDevicelndex, nRet);
hDevice = NULL;
break;

}

// Register the exception information callback function of the device.
//nRet = MV_FG_RegisterExceptionCallBack(hDevice, ExceptionCb, hDevice);
//if (MV_FG_SUCCESS != nRet)

1

// printf("Register device exception callback failed'\n");
// break;

/1}

// Disable trigger mode.
nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
if (MV_FG_SUCCESS != nRet)
{
printf("Turn off trigger mode failed! %#x\n", nRet);
break;

}

// Get the number of stream channels.

unsigned int nStreamNum = 0;

nRet = MV_FG_GetNumStreams(hDevice, &StreamNum);

if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)

{
printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
break;

105

Frame Grabber SDK (Windows-C) Developer Guide

// Open stream channel (currently only one stream channel is supported at a time).
nRet = MV_FG_OpenStream(hDevice, 0, &Stream);
if (MV_FG_SUCCESS != nRet)
{
printf("Open stream failed! %#x\n", nRet);
break;

}

// Register the exception information callback function of the stream channel.
//nRet = MV_FG_RegisterExceptionCallBack(hStream, ExceptionCb, hStream);
//if (MV_FG_SUCCESS != nRet)

1

// printf("Register stream exception callback failed!\n");
// break;

/1}

// Set the number of internal buffers for the SDK.
nRet = MV_FG_SetBufferNum(hStream, BUFFER_NUMBER);
if (MV_FG_SUCCESS != nRet)
{
printf("Set buffer number failed! %#x\n", nRet);
break;
}

// Create thread for image acquisition.
void* hThreadHandle = (void*)_beginthreadex(NULL, 0, GrabbingThread, hStream, 0, NULL);
if (NULL == hThreadHandle)
{
printf("Create thread failed'\n");
break;
}

printf("Press any key to stop acquisition.\n");
WaitForKeyPress();

// Stop image acquisition thread.

g_bExit = true;
WaitForSingleObject(hThreadHandle, INFINITE);
CloseHandle(hThreadHandle);

hThreadHandle = NULL;

} while (0);

// Close the stream channel.
if (NULL != hStream)

{

nRet = MV_FG_CloseStream(hStream);
if (MV_FG_SUCCESS != nRet)
{

}

printf("Close stream failed! %#x\n", nRet);

106

Frame Grabber SDK (Windows-C) Developer Guide

hStream = NULL;
}

// Close the device.
if (NULL != hDevice)

{
nRet = MV_FG_CloseDevice(hDevice);
if (MV_FG_SUCCESS != nRet)
{
printf("Close device failed! %#x\n", nRet);
}
hDevice = NULL;
}

// Close the frame grabber.
if (NULL != hinterface)

{
nRet = MV_FG_Closelnterface(hlnterface);
if (MV_FG_SUCCESS != nRet)
{
printf("Close interface failed! %#x\n", nRet);
}
hinterface = NULL;
}
printf("Press any key to exit.\n");
WaitForKeyPress();
return 0;
}
A.5 Get Chunk Data

The following sample codes show how to enable and configure chunk data and get the chunk data
information.

#include <stdio.h>

#include <Windows.h>

#include <process.h>

#include <conio.h>

#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define CHUNK_ID_TIMESTAMP_LITTLE 0xa5a50101 // Timestamp

#define CHUNK_ID_EXPOSURE_LITTLE 0xa5a50103 // Exposure

// Wait for key press.

void WaitForKeyPress(void)

{

while(!_kbhit())
{

107

Frame Grabber SDK (Windows-C) Developer Guide

}

Sleep(10);

}
_getch();

// Clear residual data from stdin.
void ClearStdin(void)

{

}

char c ='\0};

while (1)
{
c = getchar();

if (\n'==c || EOF ==¢)
{

}

break;

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)

{

switch(enExceptionType)

{
case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
{
printf("Exception: Interface Disconnected!\n");
break;
}
case EXCEPTION_TYPE_DEVICE_DISCONNECT:
{
printf("Exception: Device Disconnected!\n");
break;
}

case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
{

printf("Exception: Abnormal Image!\n");

break;
}
case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
{
printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
break;
}
case EXCEPTION_TYPE_STREAM_DISCONNECTED:
{
printf("Exception: Stream Disconnected!\n");
break;
}
default:

108

Frame Grabber SDK (Windows-C) Developer Guide

printf("Unknown Exception!\n");
break;

}

// Frame buffer information callback function.
void FrameCb(MV_FG_BUFFER_INFO* pstBufferInfo, void* pUser)

if (pstBufferinfo)
{

// Print image information.
printf("FrameNumber:%2164d%, Width:%d, Height:%d, Chunk Num:%d\n",
pstBufferinfo->nFramelD, pstBufferinfo->nWidth, pstBufferinfo->nHeight,
pstBufferinfo->nNumChunks);

int nRet = 0;

STREAMHANDLE hStream = (STREAMHANDLE)pUser;

unsigned int nChunkNum = pstBufferlnfo->nNumChunks; // Number of
chunks

MV_FG_CHUNK_DATA_INFO stChunkDatalnfo ={0 }; // Chunk data
information

// Print chunk data information.
p ri ntf("-k*******************\n ")

for (unsigned int i = 0; i < N"ChunkNum; i++)
{
memset(&stChunkDatalnfo, 0, sizeof(MV_FG_CHUNK_DATA_INFO));
nRet = MV_FG_GetBufferChunkData(hStream, pstBufferinfo, i, &tChunkDatalnfo);

if (MV_FG_SUCCESS != nRet)

{
printf("Get No.%d chunk data failed! %#x\n", i, nRet);
p ri ntf("********************\n ");
return;

}

switch (stChunkDatalnfo.nChunkID)

{

case CHUNK_ID_TIMESTAMP_LITTLE:
printf("Chunk ID[%#x], Chunk length[%d], Chunk data[%d]\n",
stChunkDatalnfo.nChunkID, stChunkDatalnfo.nChunkLen,
((uint32_t)stChunkDatalnfo.pChunkData));
break;
case CHUNK_ID_EXPOSURE_LITTLE:
printf("Chunk ID[%#x], Chunk length[%d], Chunk data[%f]\n",
stChunkDatalnfo.nChunkID, stChunkDatalnfo.nChunkLen,
((float)stChunkDatalnfo.pChunkData));
break;
default:
break;

109

Frame Grabber SDK (Windows-C) Developer Guide

}
}

p ri ntf("********************\n ") .

}

// Print frame grabber information.
bool Printinterfacelnfo(unsigned int ninterfaceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < ninterfaceNum; i++)

{
MV_FG_INTERFACE_INFO stinterfacelnfo = {0 };

nRet = MV_FG_GetInterfacelnfo(i, &stInterfacelnfo);

if (MV_FG_SUCCESS != nRet)

{
printf("Get info of No.%d interface failed! %#x\n", i, nRet);
return false;

}

switch (stInterfacelnfo.nTLayerType)

{
case MV_FG_CXP_INTERFACE:

{
printf("[CXP]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCXPlIfacelnfo.chSerialNumber);

break;
}
case MV_FG_GEV_INTERFACE:
{

printf("[GEVINo0.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_INTERFACE:
{

printf("[CML]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.Ifacelnfo.stCMLIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chSerialNumber);

break;

110

Frame Grabber SDK (Windows-C) Developer Guide

default:

printf("Unknown interface type.\n");
return false;

}

return true;

}

// Print device information.
bool PrintDevicelnfo(IFHANDLE hinterface, unsigned int nDeviceNum)

{
int nRet = 0;

for (unsigned int i = 0; i < nDeviceNum; i++)
{
MV_FG_DEVICE_INFO stDevicelnfo ={0};

nRet = MV_FG_GetDevicelnfo(hInterface, i, &tDevicelnfo);
if (MV_FG_SUCCESS != nRet)
{
printf("Get info of No.%d device failed! %#x\n", i, nRet);
return false;

}

switch (stDevicelnfo.nDevType)

{
case MV_FG_CXP_DEVICE:

{
printf("[CXP]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCXPDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCXPDevinfo.chModelName,
stDevicelnfo.Devinfo.stCXPDevinfo.chSerialNumber);

break;
}
case MV_FG_GEV_DEVICE:
{

printf("[GEVINo.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stGEVDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stGEVDevinfo.chModelName,
stDevicelnfo.DevInfo.stGEVDevinfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_DEVICE:
{

printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,

111

Frame Grabber SDK (Windows-C) Developer Guide

stDevicelnfo.Devinfo.stCMLDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCMLDevInfo.chModelName,
stDevicelnfo.Devinfo.stCMLDevInfo.chSerialNumber);

break;
}
default:
{
printf("Unknown device type.\n");
return false;
}
}
}
return true;
}
int main()
{
int nRet = 0;
IFHANDLE hinterface = NULL;
DEVHANDLE hDevice = NULL;
STREAMHANDLE hStream = NULL;
do
{

// Enumerate frame grabbers.
bool bChanged = false;
nRet = MV_FG_UpdatelnterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &b Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update interface list failed! %#x\n", nRet);
break;

}

// Get the number of frame grabbers.

unsigned int ninterfaceNum = 0;

nRet = MV_FG_GetNuminterfaces(&nInterfaceNum);

if (MV_FG_SUCCESS != nRet || 0 == ninterfaceNum)

{
printf("No interface found! return = %d, number = %d\n", nRet, ninterfaceNum);
break;

}

// Display frame grabber information.
if (false == PrintInterfacelnfo(ninterfaceNum))

{
}

break;

// Select frame grabber.

112

Frame Grabber SDK (Windows-C) Developer Guide

int ninterfacelndex = -1;
printf("Select an interface: ");
scanf_s("%d", &nInterfacelndex);
ClearStdin();

if (nInterfacelndex < 0 || ninterfacelndex >= (int)ninterfaceNum)
{

printf("Invalid interface index.\nQuit.\n");

break;
}

// Enable the frame grabber with specified access mode and get the frame grabber handle.
const int nAccessMode = 2; // 0 - Unknown, 1 - Read Only, 2 - Control, 3 - Exclusive
nRet = MV_FG_OpeninterfaceEx((unsigned int)ninterfacelndex, nAccessMode, &hlinterface);
if (MV_FG_SUCCESS != nRet)
{

printf("Open No.%d interface failed! %#x\n", ninterfacelndex, nRet);

break;
}

// Register the exception information callback function of the frame grabber.
//nRet = MV_FG_RegisterExceptionCallBack(hInterface, ExceptionCb, hinterface);
//if (MV_FG_SUCCESS != nRet)

I

// printf("Register interface exception callback failed'\n");
// break;

/1}

// Enumerate cameras of the frame grabber.
nRet = MV_FG_UpdateDeviceList(hinterface, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update device list failed! %#x\n", nRet);
break;
}

// Get the number of devices.

unsigned int nDeviceNum = 0;

nRet = MV_FG_GetNumDevices(hinterface, &DeviceNum);

if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)

{
printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
break;

}

// Display device information.
if (false == PrintDevicelnfo(hInterface, nDeviceNum))

{
}

break;

113

Frame Grabber SDK (Windows-C) Developer Guide

// Select device.

int nDevicelndex = -1;
printf("Select a device: ");
scanf_s("%d", &nDevicelndex);
ClearStdin();

if (nDevicelndex < 0 || nDevicelndex >= (int)nDeviceNum)
{

printf("Invalid device index.\nQuit.\n");

break;

}

// Open the device and get the device handle.
nRet = MV_FG_OpenDevice(hinterface, (unsigned int)nDevicelndex, &Device);
if (MV_FG_SUCCESS != nRet)

{
printf("Open No.%d device failed! %#x\n", nDevicelndex, nRet);
hDevice = NULL;
break;

}

// Register the exception information callback function of the device.
//nRet = MV_FG_RegisterExceptionCallBack(hDevice, ExceptionCb, hDevice);
//if (MV_FG_SUCCESS != nRet)

1

// printf("Register device exception callback failed'\n");
// break;

/1}

// Enable chunk mode.
nRet = MV_FG_SetBoolValue(hDevice, "ChunkModeActive", true);
if (MV_FG_SUCCESS != nRet)
{
printf("Set chunk mode failed! %#x\n", nRet);
break;

}

// Set Chunk Selector to Exposure.
nRet = MV_FG_SetEnumValueByString(hDevice, "ChunkSelector", "Exposure");
if (MV_FG_SUCCESS != nRet)
{
printf("Set exposure chunk failed! %#x\n", nRet);
break;

}

// Enable chunk.
nRet = MV_FG_SetBoolValue(hDevice, "ChunkEnable", true);
if (MV_FG_SUCCESS != nRet)
{
printf("Set exposure chunk enable failed! %#x\n", nRet);
break;

114

Frame Grabber SDK (Windows-C) Developer Guide

}

// Set Chunk Selector to Timestamp.
nRet = MV_FG_SetEnumValueByString(hDevice, "ChunkSelector”, "Timestamp");
if (MV_FG_SUCCESS != nRet)

{
printf("Set timestamp chunk failed! %#x\n", nRet);
break;

}

// Enable chunk.

nRet = MV_FG_SetBoolValue(hDevice, "ChunkEnable", true);
if (MV_FG_SUCCESS != nRet)
{
printf("Set timestamp chunk enable failed! %#x\n", nRet);
break;

}

// Disable trigger mode.
nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
if (MV_FG_SUCCESS != nRet)
{
printf("Turn off trigger mode failed! %#x\n", nRet);
break;
}

// Get the number of stream channels.

unsigned int nStreamNum = 0;

nRet = MV_FG_GetNumStreams(hDevice, &StreamNum);

if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)

{
printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
break;

}

// Open stream channel (currently only one stream channel is supported at a time).
nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
if (MV_FG_SUCCESS != nRet)
{
printf("Open stream failed! %#x\n", nRet);
break;

}

// Register the exception information callback function of the stream channel.
//nRet = MV_FG_RegisterExceptionCallBack(hStream, ExceptionCb, hStream);
//if (MV_FG_SUCCESS != nRet)

1

// printf("Register stream exception callback failed!\n");
// break;

/1}

115

Frame Grabber SDK (Windows-C) Developer Guide

// Set the number of internal buffers for the SDK.
nRet = MV_FG_SetBufferNum(hStream, BUFFER_NUMBER);
if (MV_FG_SUCCESS != nRet)
{
printf("Set buffer number failed! %#x\n", nRet);
break;

}

// Register the frame buffer information callback function.
nRet = MV_FG_RegisterFrameCallBack(hStream, FrameCb, hStream);
if (MV_FG_SUCCESS != nRet)
{
printf("Register frame callback failed! %#x\n", nRet);
break;

}

// Start image acquisition.

nRet = MV_FG_StartAcquisition(hStream);

if (MV_FG_SUCCESS != nRet)

{
printf("Start acquistion failed! %#x\n", nRet);
return nRet;

}

printf("Press any key to stop acquisition.\n");
WaitForKeyPress();

// Stop image acquisition.
nRet = MV_FG_StopAcquisition(hStream);
if (MV_FG_SUCCESS != nRet)

{
printf("Stop acquisition failed! %#x\n", nRet);
return nRet;
}
} while (0);

// Close stream channel.
if (NULL != hStream)

{
nRet = MV_FG_CloseStream(hStream);
if (MV_FG_SUCCESS != nRet)
{
printf("Close stream failed! %#x\n", nRet);
}
hStream = NULL;
}

// Close the device.
if (NULL != hDevice)
{
nRet = MV_FG_CloseDevice(hDevice);

116

Frame Grabber SDK (Windows-C) Developer Guide

if (MV_FG_SUCCESS != nRet)
{

}
hDevice = NULL;

printf("Close device failed! %#x\n", nRet);

}

// Close the frame grabber.
if (NULL != hinterface)

{
nRet = MV_FG_Closelnterface(hinterface);
if (MV_FG_SUCCESS != nRet)
{
printf("Close interface failed! %#x\n", nRet);
}
hinterface = NULL;
}
printf("Press any key to exit.\n");
WaitForKeyPress();
return O;

A.6 Load Dynamic Link Library

The following sample codes show how to use the frame grabber SDK with dynamic calling.
#include <stdio.h>

#include <Windows.h>

#include <process.h>

#include <conio.h>

#include "MVFGDefines.h"

#include "MVFGErrorDefine.h"

typedef unsigned char* (__stdcall * DLL_GetSDKVersion) 0;

typedef int (__stdcall * DLL_UpdatelnterfaceList) (IN unsigned int nTLayerType, OUT
bool8_t *pbChanged);

typedef int (__stdcall * DLL_GetNuminterfaces) (OUT unsigned int *pnNumlfaces);
typedef int (__stdcall * DLL_GetInterfacelnfo) (IN unsigned int nindex, OUT
MV_FG_INTERFACE_INFO *pstifacelnfo);

typedef bool (__stdcall * DLL_GetInterfacelnfoEx) (IN unsigned int nindex, IN
MV_FG_INTERFACE_INFO_CMD enlfacelnfoCmd, OUT MV_FG_INFO_VALUE *pstinfoValue);

typedef int (__stdcall * DLL_Openlnterface) (IN unsigned int nindex, OUT
IFHANDLE* phiface);

typedef int (__stdcall * DLL_OpenlnterfaceEx) (IN unsigned int nindex, IN int
nAccess, OUT IFHANDLE* phliface);

typedef int (__stdcall * DLL_Closelnterface) (IN IFHANDLE hiface);

typedef int (__stdcall * DLL_UpdateDeviceList) (IN IFHANDLE hiface, OUT bool8_t
*pbChanged);

117

Frame Grabber SDK (Windows-C) Developer Guide

typedef int (__stdcall * DLL_GetNumDevices) (IN IFHANDLE hliface, OUT
unsigned int *pnNumDevices);

typedef int (__stdcall * DLL_GetDevicelnfo) (IN IFHANDLE hlface, IN unsigned
int nindex, OUT MV_FG_DEVICE_INFO *pstDevinfo);

typedef int (__stdcall * DLL_OpenDevice) (IN IFHANDLE hlface, IN unsigned
int nindex, OUT DEVHANDLE* phDevice);

typedef int (__stdcall * DLL_CloseDevice) (IN DEVHANDLE hDevice);
typedef int (__stdcall * DLL_GetNumStreams) (IN DEVHANDLE hDevice, OUT
unsigned int *pnNumStreams);

typedef int (__stdcall * DLL_OpenStream) (IN DEVHANDLE hDevice, IN
unsigned int nindex, OUT STREAMHANDLE* phStream);

typedef int (__stdcall * DLL_CloseStream) (IN STREAMHANDLE hStream);
typedef int (__stdcall * DLL_SetBufferNum) (IN STREAMHANDLE hStream, IN
unsigned int nBufferNum);

typedef int (__stdcall * DLL_RegisterFrameCallBack) (IN STREAMHANDLE hStream, IN
MV_FG_FrameCallBack cbFrame, IN void* pUser);

typedef int (__stdcall * DLL_GetFrameBuffer) (IN STREAMHANDLE hStream, OUT
MV_FG_BUFFER_INFO* pstBufferInfo, IN unsigned int nTimeout);

typedef int (__stdcall * DLL_ReleaseFrameBuffer) (IN STREAMHANDLE hStream, IN
MV_FG_BUFFER_INFO* pstBufferlnfo);

typedef int (__stdcall * DLL_GetBufferChunkData) (IN STREAMHANDLE hStream, IN

MV_FG_BUFFER_INFO* pstBufferinfo, IN unsigned int nindex, OUT MV_FG_CHUNK_DATA_INFO*
pstChunkDatalnfo);

typedef int (__stdcall * DLL_GetPayloadSize) (IN STREAMHANDLE hStream, OUT
unsigned int* pnPayloadSize);

typedef int (__stdcall * DLL_AnnounceBuffer) (IN STREAMHANDLE hStream, IN
void *pBuffer, IN unsigned int nSize, IN void *pPrivate, OUT BUFFERHANDLE *phBuffer);

typedef int (__stdcall * DLL_RevokeBuffer) (IN STREAMHANDLE hStream, IN
BUFFERHANDLE hBuffer, OUT void **pBuffer, OUT void **pPrivate);

typedef int (__stdcall * DLL_FlushQueue) (IN STREAMHANDLE hStream, IN
MV_FG_BUFFER_QUEUE_TYPE enQueueType);

typedef int (__stdcall * DLL_StartAcquisition) (IN STREAMHANDLE hStream);
typedef int (__stdcall * DLL_StopAcquisition) (IN STREAMHANDLE hStream);
typedef int (__stdcall * DLL_GetImageBuffer) (IN STREAMHANDLE hStream, OUT
BUFFERHANDLE *phBuffer, IN unsigned int nTimeout);

typedef int (__stdcall * DLL_GetBufferInfo) (IN BUFFERHANDLE hBuffer, OUT
MV_FG_BUFFER_INFO* pstBufferlnfo);

typedef int (__stdcall * DLL_QueueBuffer) (IN BUFFERHANDLE hBuffer);
typedef int (__stdcall * DLL_GetXMLFile) (IN PORTHANDLE hPort, IN OUT
unsigned char* pData, IN unsigned int nDataSize, OUT unsigned int* pnDatalLen);

typedef int (__stdcall * DLL_GetNodeAccessMode) (IN PORTHANDLE hPort, IN const
char * strName, OUT MV_FG_NODE_ACCESS_MODE *penAccessMode);

typedef int (__stdcall * DLL_GetNodelnterfaceType) (IN PORTHANDLE hPort, IN const
char * strName, OUT MV_FG_NODE_INTERFACE_TYPE *penlinterfaceType);

typedef int (__stdcall * DLL_GetIntValue) (IN PORTHANDLE hPort, IN const
char* strkey, OUT MV_FG_INTVALUE *pstintValue);

typedef int (__stdcall * DLL_SetIntValue) (IN PORTHANDLE hPort, IN const
char* strKey, IN int64_t nValue);

typedef int (__stdcall * DLL_GetEnumValue) (IN PORTHANDLE hPort, IN const
char* strkey, OUT MV_FG_ENUMVALUE *pstEnumValue);

typedef int (__stdcall * DLL_SetEnumValue) (IN PORTHANDLE hPort, IN const

118

Frame Grabber SDK (Windows-C) Developer Guide

char* strKey, IN unsigned int nValue);

typedef int (__stdcall * DLL_SetEnumValueByString) (IN PORTHANDLE hPort, IN const
char* strKey, IN const char* strValue);

typedef int (__stdcall * DLL_GetFloatValue) (IN PORTHANDLE hPort, IN const
char* strKey, OUT MV_FG_FLOATVALUE *pstFloatValue);

typedef int (__stdcall * DLL_SetFloatValue) (IN PORTHANDLE hPort, IN const
char* strKey, IN float fValue);

typedef int (__stdcall * DLL_GetBoolValue) (IN PORTHANDLE hPort, IN const
char* strKey, OUT bool8_t *pbValue);

typedef int (__stdcall * DLL_SetBoolValue) (IN PORTHANDLE hPort, IN const
char* strKey, IN bool8_t bValue);

typedef int (__stdcall * DLL_GetStringValue) (IN PORTHANDLE hPort, IN const
char* strKey, OUT MV_FG_STRINGVALUE *pstStringValue);

typedef int (__stdcall * DLL_SetStringValue) (IN PORTHANDLE hPort, IN const
char* strKey, IN const char* strValue);

typedef int (__stdcall * DLL_SetCommandValue) (IN PORTHANDLE hPort, IN const
char* strKey);

typedef int (__stdcall * DLL_FeatureSave) (IN PORTHANDLE hPort, IN const
char* strFileName);

typedef int (__stdcall * DLL_FeatureLoad) (IN PORTHANDLE hPort, IN const
char* strFileName);

typedef int (__stdcall * DLL_RegisterExceptionCallBack)(IN PORTHANDLE hPort, IN
MV_FG_ExceptionCallBack cbException, IN void* pUser);

typedef int (__stdcall * DLL_ReleaseTLayerResource) (IN unsigned int nTLayerType);
#define BUFFER_NUMBER 3 // Number of requested buffers

#define FILE_NAME_LEN 256 // The maximum length of file name

#define SAVE_IMAGE_NUM 10 // The maximum number of saved images

#define TIMEOUT 1000 // Timeout; unit: millisecond (ms)

bool g_bExit = false; // Stop acquisition

// Thread parameters
struct MultiThrParam

{
void* pUser; // User-defined parameter
HINSTANCE hDlII; // Dynamic link library handle
%
// Wait for key press.
void WaitForKeyPress(void)
{
while('_kbhit())
{
Sleep(10);
}
_getch();
}

// Clear residual data from stdin.
void ClearStdin(void)

119

Frame Grabber SDK (Windows-C) Developer Guide

{
char ¢ ="\0}
while (1)
{
¢ = getchar();
if (\n'==c || EOF == ¢)
{
break;
}
}
}

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)

{

switch(enExceptionType)

{
case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
{
printf("Exception: Interface Disconnected!\n");
break;
}
case EXCEPTION_TYPE_DEVICE_DISCONNECT:
{
printf("Exception: Device Disconnected!\n");
break;
}
case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
{
printf("Exception: Abnormal Image!\n");
break;
}
case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
{
printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
break;
}
case EXCEPTION_TYPE_STREAM_DISCONNECTED:
{
printf("Exception: Stream Disconnected!\n");
break;
}
default:
{
printf("Unknown Exception!\n");
break;
}
}

120

Frame Grabber SDK (Windows-C) Developer Guide

// Save the original image data.
void SaveRawlmage(int nlmageNo, MV_FG_BUFFER_INFO* pstimagelnfo)
{

if (pstimagelnfo)
char szFileName[FILE_NAME_LEN] ={0 };

sprintf_s(szFileName, FILE_NAME_LEN, "Image_w%d_h%d_n%d.raw", pstimagelnfo->nWidth,
pstimagelnfo->nHeight, nimageNo);

FILE* plmageFile = NULL;
if (0 != fopen_s(&plmageFile, szFileName, "wb")) || (NULL == plmageFile))
{

return;

}

fwrite(pstimagelnfo->pBuffer, 1, pstimagelnfo->nFilledSize, pimageFile);
fclose(plmageFile);

}

// Image acquisition thread.
unsigned int __stdcall GrabbingThread(void* pUser)

{
if (pUser)
{
MultiThrParam* pstThreadParam = (MultiThrParam*)pUser;
MV_FG_BUFFER_INFO stFramelnfo ={0} // Image information
int nSavelmage =0, // Number of saved images
int nRet =0;

DLL_StartAcquisition DLLStartAcquisition =
(DLL_StartAcquisition)GetProcAddress(pstThreadParam->hDlIl, "MV_FG_StartAcquisition");
DLL_GetFrameBuffer DLLGetFrameBuffer =
(DLL_GetFrameBuffer)GetProcAddress(pstThreadParam->hDlIl, "MV_FG_GetFrameBuffer");
DLL_ReleaseFrameBuffer DLLReleaseFrameBuffer =
(DLL_ReleaseFrameBuffer)GetProcAddress(pstThreadParam->hDll, "MV_FG_ReleaseFrameBuffer");
DLL_StopAcquisition DLLStopAcquisition =
(DLL_StopAcquisition)GetProcAddress(pstThreadParam->hDlII, "MV_FG_StopAcquisition");

// Start image acquisition.
nRet = DLLStartAcquisition(pstThreadParam->pUser);
if (MV_FG_SUCCESS != nRet)

{
printf("Start acquistion failed! %#x\n", nRet);
return nRet;

}

g_bExit = false;

while ('g_bExit)

121

Frame Grabber SDK (Windows-C) Developer Guide

// Get the buffer information of a frame.
nRet = DLLGetFrameBuffer(pstThreadParam->pUser, &stFramelnfo, TIMEOUT);
if (MV_FG_SUCCESS != nRet)

{
printf("Get frame buffer info failed! %#x\n", nRet);
continue;

}

else

{

printf("FrameNumber:%2164d%, Width:%d, Height:%d\n", stFramelnfo.nFramelD,
stFramelnfo.nWidth, stFramelnfo.nHeight);

if (nSavelmage < SAVE_IMAGE_NUM)
{

}

SaveRawlmage(++nSavelmage, &stFramelnfo);

}

// Insert the buffer back to the input queue.
nRet = DLLReleaseFrameBuffer(pstThreadParam->pUser, &stFramelnfo);
if (MV_FG_SUCCESS != nRet)
{
printf("Release frame buffer failed! %#x\n", nRet);
break;

}

// Stop image acquisition.
nRet = DLLStopAcquisition(pstThreadParam->pUser);
if (MV_FG_SUCCESS != nRet)

{
printf("Stop acquisition failed! %#x\n", nRet);
return nRet;

}

return MV_FG_SUCCESS;
}

// Print frame grabber information.
bool Printinterfacelnfo(HINSTANCE hDII, unsigned int ninterfaceNum)

{
int nRet = 0;

DLL_GetInterfacelnfo DLLGetInterfacelnfo = (DLL_GetInterfacelnfo)GetProcAddress(hDII,
"MV_FG_Getlnterfacelnfo");

for (unsigned int i = 0; i < nInterfaceNum; i++)

MV_FG_INTERFACE_INFO stinterfacelnfo = {0 };

122

Frame Grabber SDK (Windows-C) Developer Guide

nRet = DLLGetInterfacelnfo(i, &stInterfacelnfo);

if (MV_FG_SUCCESS != nRet)

{
printf("Get info of No.%d interface failed! %#x\n", i, nRet);
return false;

}

switch (stinterfacelnfo.nTLayerType)

{
case MV_FG_CXP_INTERFACE:

{
printf("[CXP]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chinterfacelD,
stinterfacelnfo.Ifacelnfo.stCXPIfacelnfo.chSerialNumber);

break;
}
case MV_FG_GEV_INTERFACE:
{

printf("[GEVINo.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_INTERFACE:
{

printf("[CML]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chSerialNumber);

break;
}
default:
{
printf("Unknown interface type.\n");
return false;
}

}

return true;

}

// Print device information.
bool PrintDevicelnfo(HINSTANCE hDII, IFHANDLE hinterface, unsigned int nDeviceNum)

{
int nRet = 0;

123

Frame Grabber SDK (Windows-C) Developer Guide

DLL_GetDevicelnfo DLLGetDevicelnfo = (DLL_GetDevicelnfo)GetProcAddress(hDll,
"MV_FG_GetDevicelnfo");

for (unsigned int i = 0; i < nDeviceNum; i++)

{
MV_FG_DEVICE_INFO stDevicelnfo={ 0 };

nRet = DLLGetDevicelnfo(hinterface, i, &stDevicelnfo);

if (MV_FG_SUCCESS != nRet)

{
printf("Get info of No.%d device failed! %#x\n", i, nRet);
return false;

}

switch (stDevicelnfo.nDevType)

{
case MV_FG_CXP_DEVICE:

{
printf("[CXP]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCXPDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCXPDevinfo.chModelName,
stDevicelnfo.Devinfo.stCXPDevinfo.chSerialNumber);

break;
}
case MV_FG_GEV_DEVICE:
{

printf("[GEV]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stGEVDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stGEVDevinfo.chModelName,
stDevicelnfo.DevInfo.stGEVDevinfo.chSerialNumber);

break;
}
case MV_FG_CAMERALINK_DEVICE:
{

printf("[CML]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCMLDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCMLDevInfo.chModelName,
stDevicelnfo.Devinfo.stCMLDevInfo.chSerialNumber);

break;
}
default:
{
printf("Unknown device type.\n");
return false;
}

124

Frame Grabber SDK (Windows-C) Developer Guide

return true;

}

int main()

{
HINSTANCE MVFGCtrIDIl = NULL; // Handle of MVFGControl.dlI

// The default path for the dynamic link library is System Disk:\Program Files (x86)\Common
Files\MVS\Runtime
MVFGCtrIDIl = LoadLibrary("MVFGControl.dlIl");
if (NULL == MVFGCtrIDII)
{
DWORD errCode = GetLastError();
printf("Error code! [%Id]\n",errCode);
printf("Press any key to exit.\n");
WaitForKeyPress();
return -1;

}

int nRet = 0;

IFHANDLE hinterface = NULL;
DEVHANDLE hDevice = NULL;
STREAMHANDLE hStream = NULL;

do
{
// Enumerate frame grabbers.
bool bChanged = false;
DLL_UpdatelnterfaceList DLLUpdatelnterfacelList =
(DLL_UpdatelnterfaceList)GetProcAddress(MVFGCtrIDIl, "MV_FG_UpdatelnterfaceList");
nRet = DLLUpdatelnterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &b Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update interface list failed! %#x\n", nRet);
break;

}

// Get the number of frame grabbers.

unsigned int ninterfaceNum = 0;

DLL_GetNuminterfaces DLLGetNumiInterfaces =

(DLL_GetNumiInterfaces)GetProcAddress(MVFGCtriIDIl, "MV_FG_GetNuminterfaces");

nRet = DLLGetNuminterfaces(&nInterfaceNum);

if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)

{
printf("No interface found! return = %d, number = %d\n", nRet, ninterfaceNum);
break;

}

// Display frame grabber information.

125

Frame Grabber SDK (Windows-C) Developer Guide

if (false == PrintInterfacelnfo(MVFGCtrIDII, ninterfaceNum))
{

}

// Select frame grabber.

int ninterfacelndex = -1;
printf("Select an interface: ");
scanf_s("%d", &ninterfacelndex);
ClearStdin();

break;

if (nInterfacelndex < 0 || ninterfacelndex >= (int)ninterfaceNum)
{

printf("Invalid interface index.\nQuit.\n");

break;
}

// Open the frame grabber with specified access mode and get the frame grabber handle.
const int nAccessMode = 2; // 0 - Unknown, 1 - Read Only, 2 - Control, 3 - Exclusive
DLL_OpenlinterfaceEx DLLOpenInterfaceEx =

(DLL_OpenInterfaceEx)GetProcAddress(MVFGCtrIDIl, "MV_FG_OpenlinterfaceEx");

nRet = DLLOpenInterfaceEx((unsigned int)ninterfacelndex, nAccessMode, &hlinterface);
if (MV_FG_SUCCESS != nRet)
{

printf("Open No.%d interface failed! %#x\n", ninterfacelndex, nRet);

break;

}

// Enumerate cameras of the frame grabber.
DLL_UpdateDeviceList DLLUpdateDeviceList =

(DLL_UpdateDeviceList)GetProcAddress(MVFGCtrIDIl, "MV_FG_UpdateDeviceList");

nRet = DLLUpdateDeviceList(hInterface, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update device list failed! %#x\n", nRet);
break;
}

// Get the number of devices.
unsigned int nDeviceNum = 0;
DLL_GetNumbDevices DLLGetNumDevices =

(DLL_GetNumDevices)GetProcAddress(MVFGCtrIDIl, "MV_FG_GetNumDevices");

nRet = DLLGetNumDevices(hInterface, &nDeviceNum);

if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)

{
printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
break;

}

// Display device information.
if (false == PrintDevicelnfo(MVFGCtrIDII, hinterface, nDeviceNum))

126

Frame Grabber SDK (Windows-C) Developer Guide

{
}

break;

// Select device.

int nDevicelndex = -1;
printf("Select a device: ");
scanf_s("%d", &nDevicelndex);
ClearStdin();

if (nDevicelndex < 0 || nDevicelndex >= (int)nDeviceNum)
{

printf("Invalid device index.\nQuit.\n");

break;

}

// Open the device and get the device handle.

DLL_OpenDevice DLLOpenDevice = (DLL_OpenDevice)GetProcAddress(MVFGCitriDlI,
"MV_FG_OpenDevice");

nRet = DLLOpenDevice(hinterface, (unsigned int)nDevicelndex, &nDevice);

if (MV_FG_SUCCESS != nRet)

{
printf("Open No.%d device failed! %#x\n", nDevicelndex, nRet);
hDevice = NULL;
break;

}

// Disable trigger mode.
DLL_SetEnumValueByString DLLSetEnumValueByString =
(DLL_SetEnumValueByString)GetProcAddress(MVFGCtrIDIl, "MV_FG_SetEnumValueByString");
nRet = DLLSetEnumValueByString(hDevice, "TriggerMode", "Off");
if (MV_FG_SUCCESS != nRet)
{
printf("Turn off trigger mode failed! %#x\n", nRet);
break;

}

// Get the number of stream channels.

unsigned int nStreamNum = 0;

DLL_GetNumStreams DLLGetNumStreams =

(DLL_GetNumStreams)GetProcAddress(MVFGCtrIDIl, "MV_FG_GetNumStreams");

nRet = DLLGetNumStreams(hDevice, &StreamNum);

if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)

{
printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
break;

}

// Open stream channel (currently only one stream channel is supported at a time).
DLL_OpenStream DLLOpenStream = (DLL_OpenStream)GetProcAddress(MVFGCtriDII,
"MV_FG_OpenStream");

127

Frame Grabber SDK (Windows-C) Developer Guide

nRet = DLLOpenStream(hDevice, 0, & Stream);
if (MV_FG_SUCCESS != nRet)
{
printf("Open stream failed! %#x\n", nRet);
break;
}

// Set the number of internal buffers for the SDK.
DLL_SetBufferNum DLLSetBufferNum = (DLL_SetBufferNum)GetProcAddress(MVFGCtrIDII,
"MV_FG_SetBufferNum");
nRet = DLLSetBufferNum(hStream, BUFFER_NUMBER);
if (MV_FG_SUCCESS != nRet)
{
printf("Set buffer number failed! %#x\n", nRet);
break;
}

// Create thread for image acquisition.
MultiThrParam stThreadParam = {0 };
stThreadParam.pUser = hStream;
stThreadParam.hDll = MVFGCtrIDll;
void* hThreadHandle = (void*)_beginthreadex(NULL, 0, GrabbingThread,
(void*)&stThreadParam, 0, NULL);
if (NULL == hThreadHandle)
{
printf("Create thread failed'\n");
break;

}

printf("Press any key to stop acquisition.\n");
WaitForKeyPress();

// Stop image acquisition thread.
g_bEXxit = true;
WaitForSingleObject(hThreadHandle, INFINITE);
CloseHandle(hThreadHandle);
hThreadHandle = NULL;

} while (0);

// Close stream channel.
if (NULL != hStream)

{
DLL_CloseStream DLLCloseStream = (DLL_CloseStream)GetProcAddress(MVFGCtrIDII,
"MV_FG_CloseStream");
nRet = DLLCloseStream(hStream);
if (MV_FG_SUCCESS != nRet)
{

}
hStream = NULL;

printf("Close stream failed! %#x\n", nRet);

128

Frame Grabber SDK (Windows-C) Developer Guide

// Close the device.
if (NULL != hDevice)

{
DLL_CloseDevice DLLCloseDevice = (DLL_CloseDevice)GetProcAddress(MVFGCtriDlI,
"MV_FG_CloseDevice");
nRet = DLLCloseDevice(hDevice);
if (MV_FG_SUCCESS != nRet)
{

}
hDevice = NULL;

printf("Close device failed! %#x\n", nRet);

}

// Close the frame grabber.
if (NULL != hinterface)

{
DLL_Closelnterface DLLCloselnterface = (DLL_Closelnterface)GetProcAddress(MVFGCtrIDII,
"MV_FG_Closelnterface");
nRet = DLLCloselnterface(hinterface);
if (MV_FG_SUCCESS != nRet)
{

}
hinterface = NULL;

printf("Close interface failed! %#x\n", nRet);

}
FreeLibrary(MVFGCtrIDIl);

printf("Press any key to exit.\n");
WaitForKeyPress();

return O;

A.7 Receive Events

The following sample codes show how to configure the frame grabber event, how to register event
callback, and how to handle the event information received in the callback function.

#include <Windows.h>

#include <conio.h>

#include <stdio.h>

#include <process.h>

#include "MVFGControl.h"

bool g_bExit = FALSE;
#define BUFFER_NUMBER 3 // Number of requested buffers

void __stdcall EventCallBack(MV_FG_EVENT_INFO* pstEventinfo, void* pUser)

129

Frame Grabber SDK (Windows-C) Developer Guide

static int nEventNum = 0;
nEventNum-++;

if (NULL != pstEventinfo)
{

printf("%d Event: name %s id 0x%Xx time %lld \r\n", nEventNum, pstEventinfo->EventName,
pstEventinfo->nEventID, pstEventinfo->nTimestamp);

}
}

// Wait for key press.
void WaitForKeyPress(void)

{
while(!_kbhit())
{

Sleep(10);

_getch();

// Clear residual data from stdin.
void ClearStdin(void)

{

charc="0}

do
{
c = getchar();
if (c == "\n' ||c == EOF)

{
break;
}
}
while(TRUE);

// Stream acquiring thread.
unsigned int __stdcall GrabbingThread(void* pUser)

{
if (pUser)
STREAMHANDLE hStream = (STREAMHANDLE)pUser;
BUFFERHANDLE hBuffer = NULL;
MV_FG_BUFFER_INFO stFramelnfo = {0};
int nSavelmage = 10;
int nFrameNum =0;

// Start acquiring images.
int nRet = MV_FG_StartAcquisition(hStream);

130

Frame Grabber SDK (Windows-C) Developer Guide

if (MV_FG_SUCCESS != nRet)

{
printf("Start Acquisition failed, %#x\n", nRet);
return nRet;

}
while('g_bExit)
{

// Get the image buffer.
nRet = MV_FG_GetlmageBuffer(hStream, &hBuffer, 1000);
if (MV_FG_SUCCESS == nRet)
{
nRet = MV_FG_GetBufferInfo(hBuffer, &stFramelnfo);
if (MV_FG_SUCCESS == nRet)
{
nFrameNum++;
printf("FrameNumber %8d: %-8164d\tWidth: %d\tHeight: %d\n", nFrameNum,
stFramelnfo.nFramelD, stFramelnfo.nWidth, stFramelnfo.nHeight);

}

// Insert the image buffer back to the input queue.
nRet = MV_FG_QueueBuffer(hBuffer);
if (MV_FG_SUCCESS != nRet)

{
printf("Queue Buffer error, %#x\n", nRet);
break;
}
}
else
{
printf("Get image buffer failed, %#x\n", nRet);
}

}

// Stop acquisition.
nRet = MV_FG_StopAcquisition(hStream);
if (MV_FG_SUCCESS != nRet)

{
printf("Stop Acquisition failed, %#x\n", nRet);
return nRet;
}
}
return MV_FG_SUCCESS;
}
int main(int argc, char** argv)
{
int nRet = MV_FG_SUCCESS;
IFHANDLE hinterface = NULL;

131

Frame Grabber SDK (Windows-C) Developer Guide

DEVHANDLE hDevice = NULL;
STREAMHANDLE hStream = NULL;
BUFFERHANDLE hBuffer[BUFFER_NUMBER] = {0};
void* pBuffer[BUFFER_NUMBER] = {0};

do
{
// Enumerate frame grabbers.
bool bChanged = false;
nRet = MV_FG_UpdatelnterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update Interface List error, %#x\n", nRet);
break;
}

// Get the number of frame grabbers.
unsigned int ninterfaceNumber = 0;
nRet = MV_FG_GetNuminterfaces(&nInterfaceNumber);
if (MV_FG_SUCCESS != nRet || 0 == nIinterfaceNumber)
{

printf("No Interface found\n");

break;
}

// Print the frame grabber information.
for (unsigned int i = 0; i < nInterfaceNumber; i++)

MV_FG_INTERFACE_INFO stinterfacelnfo = {0};

nRet = MV_FG_Getlnterfacelnfo(i, &stInterfacelnfo);
if (MV_FG_SUCCESS != nRet)

{
printf("Get info of No.%d Interface error, %#x\n", i, nRet);
break;
}
if (stinterfacelnfo.nTLayerType == MV_FG_CXP_INTERFACE)
{

printf("[CXP]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCXPIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCXPlIfacelnfo.chSerialNumber);

}
else if (stinterfacelnfo.nTLayerType == MV_FG_GEV_INTERFACE)

{
printf("[GEV]INo.%d Interface:
\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chDisplayName,

132

Frame Grabber SDK (Windows-C) Developer Guide

stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stGEVIfacelnfo.chSerialNumber);

}

else if (stinterfacelnfo.nTLayerType == MV_FG_CAMERALINK_INTERFACE)

{
printf("[CML]No.%d Interface:

\n\tDisplayName: %s\n\tinterfacelD: %s\n\tSerialNumber:%s\n", i,

NULL);

nRet);

stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chDisplayName,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chinterfacelD,
stinterfacelnfo.lfacelnfo.stCMLIfacelnfo.chSerialNumber);

}
}
if (MV_FG_SUCCESS != nRet)
{
break;
}

// Select a frame grabber and get the index.
int nSelectedInterfacelndex = -1;
printf("Select an interface: ");

scanf_s("%d", &nSelectedInterfacelndex);
ClearStdin();

if ((nSelectedInterfacelndex < 0) || (nSelectedInterfacelndex >= (int)ninterfaceNumber))

{

printf("invalid interface index, Quit\n");
break;

}

// Open the frame grabber. The frame grabber handle will be returned.
nRet = MV_FG_Openinterface(nSelectedinterfacelndex, &hinterface);
if (MV_FG_SUCCESS != nRet)

{

printf("Open No.%d Interface error, %#x\n", nSelectedInterfacelndex, nRet);
break;

}

// Register the callback function for events
nRet = MV_FG_RegisterEventCallBack(hInterface, "ReceivelmageFrameStart0", EventCallBack,

if (MV_FG_SUCCESS != nRet)
{

printf("MV_FG_RegisterEventCallBack event %s error, %#x\n", "ReceivelmageFrameStart0",

break;
}

// Set the event type to stream event (you can set types of other events under the camera

node EventCategory)

nRet = MV_FG_SetEnumValueByString(hinterface, "EventCategory", "StreamEvent");
if (MV_FG_SUCCESS != nRet)

133

Frame Grabber SDK (Windows-C) Developer Guide

{
printf("MV_FG_SetEnumValueByString EventCategory %s error, %#x\n", "StreamEvent",
nRet);
break;
}
// Set the event channel (Channel0-Channel3)
nRet = MV_FG_SetEnumValueByString(hinterface, "ChannelSelector”, "Channel0");
if (MV_FG_SUCCESS != nRet)
{
printf("MV_FG_SetEnumValueByString ChannelSelector %s error, %#x\n", "Channel0",
nRet);
break;
}

// Set the specific event (you can set other specific events under the camera node
EventSelector)

nRet = MV_FG_SetEnumValueByString(hinterface, "EventSelector”,
"ReceivelmageFrameStart0");

if (MV_FG_SUCCESS != nRet)

{
printf("MV_FG_SetEnumValueByString EventSelector %s error, %#x\n",
"ReceivelmageFrameStart0", nRet);
break;
}

// Enable the event notification

nRet = MV_FG_SetEnumValueByString(hinterface, "EventNotification”, "On");

if (MV_FG_SUCCESS != nRet)

{
printf("MV_FG_SetEnumValueByString EventNotification %s error, %#x\n", "On", nRet);
break;

}

// Enumerate cameras of the frame grabber.
nRet = MV_FG_UpdateDeviceList(hInterface, & Changed);
if (MV_FG_SUCCESS != nRet)
{
printf("Update Device list error, %#x\n", nRet);
break;

}

// Get and print the device information.
unsigned int nDeviceNumber = 0;
nRet = MV_FG_GetNumDevices(hInterface, &hDeviceNumber);
if (MV_FG_SUCCESS != nRet || 0 == nDeviceNumber)
{
printf("No devices found, %#x\n", nRet);
break;

134

Frame Grabber SDK (Windows-C) Developer Guide

for (unsigned int i = 0; i < nDeviceNumber; i++)

{
MV_FG_DEVICE_INFO stDevicelnfo = {0};

nRet = MV_FG_GetDevicelnfo(hinterface, i, &tDevicelnfo);
if (MV_FG_SUCCESS != nRet)

{
printf("Get Info of No.%u Device error, %#x\n", i, nRet);
break;

}

if (stDevicelnfo.nDevType == MV_FG_CXP_DEVICE)

{

printf("[CXP]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCXPDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCXPDevinfo.chModelName,
stDevicelnfo.Devinfo.stCXPDevinfo.chSerialNumber);

}
else if (stDevicelnfo.nDevType == MV_FG_GEV_DEVICE)

{
printf("[GEVINo.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stGEVDevinfo.chUserDefinedName,
stDevicelnfo.Devinfo.stGEVDevIinfo.chModelName,
stDevicelnfo.DevInfo.stGEVDevinfo.chSerialNumber);

}
else if (stDevicelnfo.nDevType == MV_FG_CAMERALINK_DEVICE)

{
printf("[CML]No.%d Device:

\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
stDevicelnfo.Devinfo.stCMLDevInfo.chUserDefinedName,
stDevicelnfo.Devinfo.stCMLDevInfo.chModelName,
stDevicelnfo.DevInfo.stCMLDevInfo.chSerialNumber);

}
}
if (MV_FG_SUCCESS != nRet)
{
break;
}

// Select the device.

int nSelectedDevicelndex = -1;
printf("Select a device: ");
scanf_s("%d", &nSelectedDevicelndex);
ClearStdin();

if ((nSelectedDevicelndex < 0) || (nSelectedDevicelndex >= (int)nDeviceNumber))

{

printf("invalid device index, Quit\n");
break;

135

Frame Grabber SDK (Windows-C) Developer Guide

}

// Open the device and get the device handle.
nRet = MV_FG_OpenDevice(hinterface, nSelectedDevicelndex, &Device);
if (MV_FG_SUCCESS != nRet)

{
printf("Open device error, %#x\n", nRet);
hDevice = NULL;
break;

}

// Close the trigger mode.

nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
if (MV_FG_SUCCESS != nRet)
{

printf("Turn off TriggerMode failed, %#x\n", nRet);

break;

}

// Get the number of streaming channels.
unsigned int nStreamNumber = 0;
nRet = MV_FG_GetNumStreams(hDevice, &StreamNumber);
if (MV_FG_SUCCESS != nRet || 0 == nStreamNumber)
{
printf("No Stream available\n");
break;

}

// Open the streaming channel (now only a single streaming channel is supported)
nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
if (MV_FG_SUCCESS != nRet)
{
printf("Open Stream error, %#x\n", nRet);
break;

}

// Get the image size.
unsigned int nimagePayloadSize = 0;
nRet = MV_FG_GetPayloadSize(hStream, &1lmagePayloadSize);
if (MV_FG_SUCCESS != nRet)
{
printf("Get payload size error, %#x\n", nRet);
break;

}

// Allocate and register the buffer of images.
for (unsigned int i = 0; i < BUFFER_NUMBER; i++)
{

// Allocate the image buffer.

pBuffer[i] = malloc(nlmagePayloadSize);

if (NULL == pBufferl[i])

136

Frame Grabber SDK (Windows-C) Developer Guide

{
printf("Allocate Buffer error\n");
nRet = MV_FG_ERR_OUT_OF_MEMORY;
break;

}

// Register the buffer for SDK.

nRet = MV_FG_AnnounceBuffer(hStream, pBufferli], nlmagePayloadSize, NULL,
&(hBufferli]));

if (MV_FG_SUCCESS != nRet)

{

printf("Announce Buffer error, %#x\n", nRet);
break;

}

if (MV_FG_SUCCESS != nRet)
{

}

break;

// Insert all buffers back to the input queue.

nRet = MV_FG_FlushQueue(hStream, MV_FG_BUFFER_QUEUE_ALL_TO_INPUT);
if (MV_FG_SUCCESS != nRet)

{

}

break;

// Create a thread for streaming.
void* hThreadHandle = (void*) _beginthreadex(NULL , 0, GrabbingThread , hStream, 0, NULL);
if (NULL == hThreadHandle)
{
printf("Create Thread Error\n");
break;
}

printf("Press any key to stop acquisition.\n");
WaitForKeyPress();

g_bEXxit = true;
WaitForSingleObject(hThreadHandle, INFINITE);
CloseHandle(hThreadHandle);
hThreadHandle = NULL;

} while (0);

// Release relative resources.

if (NULL != hStream)

{
// Clear the buffer queue.
nRet = MV_FG_FlushQueue(hStream, MV_FG_BUFFER_QUEUE_ALL_DISCARD);
if (MV_FG_SUCCESS != nRet)

137

Frame Grabber SDK (Windows-C) Developer Guide

{
}

printf("Flush Buffer Queue error, %#x\n", nRet);

// Release the registered buffer.
for (unsigned int i = 0; i < BUFFER_NUMBER; i++)

{
if (NULL != hBuffer(i])
{
nRet = MV_FG_RevokeBuffer(hStream, hBuffer[i], NULL, NULL);
if (MV_FG_SUCCESS != nRet)
{
printf("Revoke Buffer failed, %#x\n", nRet);
}
hBuffer[i] = NULL;
}
if (NULL != pBufferl[i])
free(pBufferli]);
pBuffer[i] = NULL;
}
}

// Close the streaming channel.

nRet = MV_FG_CloseStream(hStream);
if (MV_FG_SUCCESS != nRet)

{

}
hStream = NULL;

printf("Close Stream error, %#x\n", nRet);

}

// Close the device.
if (NULL != hDevice)

{
nRet = MV_FG_CloseDevice(hDevice);
if (MV_FG_SUCCESS != nRet)
{
printf("Close device error, %#x\n", nRet);
}
hDevice = NULL;
}

// Close the frame grabber.

if (NULL !'= hinterface)

{
nRet = MV_FG_Closelnterface(hinterface);
if (MV_FG_SUCCESS != nRet)
{

printf("Close Interface error, %#x\n", nRet);

138

Frame Grabber SDK (Windows-C) Developer Guide

}
hinterface = NULL;

}

printf("Press any key to exit.\n");
WaitForKeyPress();

return O;

139

Frame Grabber SDK (Windows-C) Developer Guide

Appendix B. Error Code

SDK Error Code

You can search for the detailed error descriptions according to returned error codes or error names.

Error Code

Error Name

Description

Normal Status Code

0x00000000

MV_FG_SUCCESS

Succeeded.

General Error Codes (from 0x80190001 to 0x801900FF)

0x80190001 MV_FG_ERR_ERROR Unknown error.
0x80190002 MV_FG_ERR_NOT_INITIALIZED Not initialized.
0x80190003 MV_FG_ERR_NOT_IMPLEMENTED Not implemented.
0x80190004 MV_FG_ERR_RESOURCE_IN_USE The requested resource is in use.
0x80190005 MV_FG_ERR_ACCESS_DENIED No access permission.
0x80190006 MV_FG_ERR_INVALID_HANDLE Invalid handle.
0x80190007 MV_FG_ERR_INVALID_ID Invalid ID.

0x80190008 MV_FG_ERR_NO_DATA No data.

0x80190009 MV_FG_ERR_INVALID_PARAMETER Invalid parameter.
0x80190010 MV_FG_ERR_IO 10 error.

0x80190011 MV_FG_ERR_TIMEOUT Timed out.

0x80190012 MV_FG_ERR_ABORT Operation interrupted.
0x80190013 MV_FG_ERR_INVALID_BUFFER Invalid buffer.

0x80190014 MV_FG_ERR_NOT_AVAILABLE Unreachable.

0x80190015 MV_FG_ERR_INVALID_ADDRESS Invalid address.
0x80190016 MV_FG_ERR_BUFFER_TOO_SMALL Buffer too small.
0x80190017 MV_FG_ERR_INVALID_INDEX Invalid index.

0x80190018 MV_FG_ERR_PARSING_CHUNK_DATA | Failed to parse chunk.
0x80190019 MV_FG_ERR_INVALID_VALUE Invalid value.

0x80190020 MV_FG_ERR_RESOURCE_EXHAUSTED | Resource exhausted.
0x80190021 MV_FG_ERR_OUT_OF_MEMORY Failed to request memory.
0x80190022 MV_FG_ERR_BUSY Busy.

0x80190023 MV_FG_ERR_LOADLIBRARY Failed to load dynamic link library.
0x80190024 MV_FG_ERR_CALLORDER Incorrect order of API calls.

140

Frame Grabber SDK (Windows-C) Developer Guide

Error Code

Error Name

Description

GenlCam Related Error Codes (from 0x80190100 to 0x801

901FF)

0x80190100 MV_FG_ERR_GC_GENERIC Generic error.

0x80190101 MV_FG_ERR_GC_ARGUMENT Parameter error.
0x80190102 MV_FG_ERR_GC_RANGE The value is out of range.
0x80190103 MV_FG_ERR_GC_PROPERTY Attribute error.
0x80190104 MV_FG_ERR_GC_RUNTIME Running environment error.
0x80190105 MV_FG_ERR_GC_LOGICAL Logic error.

0x80190106 MV_FG_ERR_GC_ACCESS Access permission error.
0x80190107 MV_FG_ERR_GC_TIMEOUT Timed out.

0x80190108 MV_FG_ERR_GC_DYNAMICCAST Conversion exception.
0x801901FF MV_FG_ERR_GC_UNKNOW GenlCam unknown error.

Image Processing Related Error Codes (from 0x80190200

to 0x801902FF)

0x80190200 MV_FG_ERR_IMG_HANDLE Handle error.

0x80190201 MV_FG_ERR_IMG_SUPPORT Not supported.

0x80190202 MV_FG_ERR_IMG_PARAMETER Parameter error.

0x80190203 MV_FG_ERR_IMG_OVERFLOW Out of memory.

0x80190204 MV_FG_ERR_IMG_INITIALIZED Operation not initialized.

0x80190205 MV_FG_ERR_IMG_RESOURCE Failed to release resource.

0x80190206 MV_FG_ERR_IMG_ENCRYPT Image encryption error.

0x80190207 MV_FG_ERR_IMG_FORMAT Incorrect image format or image format
not supported.
Incorrect image width/height or image

0x80190208 MV_FG_ERR_IMG_SIZE width/height out of range.

080190209 MV_FG_ERR_IMG_STEP The value of image width/height and step
parameter mismatch.

0x80190210 | MV_FG_ERR_IMG_DATA_NULL depffdress for storing the image data is

0x80190211 | MV_FG_ERR_IMG_ABILITY_ARG The image algorithm capability contains
invalid parameters.

0x801902EF MV_FG_ERR_IMG_UNKNOW Unknown error occurred during image

processing.

141

Frame Grabber SDK (Windows-C) Developer Guide

GenTL Error Code
Error Code Error Name Description

-1001 GC_ERR_ERROR Unknown error.

-1002 GC_ERR_NOT_INITIALIZED Module or resource is not initialized.

-1003 GC_ERR_NOT_IMPLEMENTED The requested operation is not
implemented.

1004 GC_ERR_RESOURCE._IN_USE The requested resource is already
occupied.

-1005 GC_ERR_ACCESS_DENIED The requested resource is not allowed.

1006 GC_ERR_INVALID_HANDLE The given handle does not support the
operation.
Failed to connect to the specified

1007 GC_ERR_INVALID_ID resource by the invalid ID.

1008 GC_ERR_NO_DATA The function has no data to be
processed.

-1009 GC_ERR_INVALID_PARAMETER Invalid given parameter(s).

-1010 GC_ERRLIO I/0 communication error.

-1011 GC_ERR_TIMEOUT Operation timed out.

1012 GC_ERR_ABORT The operation is aborted before being
completed.
The registered buffer is not enough to

-1013 GC_ERR_INVALID_BUFFER acquire images in the current
acquisition mode.
Resource or information is not

-1014 GC_ERR_NOT_AVAILABLE available within the given time in the
current status.

1015 GC_ERR_INVALID_ADDRESS The given address is invalid or out of
range due to internal reasons.

1016 GC_ERR_BUFFER_TOO_SMALL The prowded buffer is too small to
receive the expected amount of data.

-1017 GC_ERR_INVALID_INDEX The index is out of range.

i An error occurred when parsing a

1018 GC_ERR_PARSING_CHUNK_DATA buffer containing chunk data.

1019 GC_ERR_INVALID_VALUE Trying to write an invalid value to the
register.

-1020 GC_ERR_RESOURCE_EXHAUSTED The requested resource is exhausted.

1021 GC_ERR_OUT_OF_MEMORY No enough memory for the system or
hardware of the system.

142

Frame Grabber SDK (Windows-C) Developer Guide

Error Code Error Name Description
Failed to perform the requested
-1022 GC_ERR_BUSY operation. The current module or
instance is busy.

143

	Chapter 1 Overview
	1.1 Introduction
	1.2 Development Environment
	1.3 Update History

	Chapter 2 Basic Process
	Chapter 3 API Reference
	3.1 Version Information
	3.1.1 MV_FG_GetSDKVersion

	3.2 Frame Grabber
	3.2.1 MV_FG_UpdateInterfaceList
	3.2.2 MV_FG_ReleaseTLayerResource
	3.2.3 MV_FG_GetNumInterfaces
	3.2.4 MV_FG_GetInterfaceInfo
	3.2.5 MV_FG_OpenInterface
	3.2.6 MV_FG_OpenInterfaceEx
	3.2.7 MV_FG_OpenInterfaceByID
	3.2.8 MV_FG_CloseInterface

	3.3 Device
	3.3.1 MV_FG_UpdateDeviceList
	3.3.2 MV_FG_GetNumDevices
	3.3.3 MV_FG_GetDeviceInfo
	3.3.4 MV_FG_OpenDevice
	3.3.5 MV_FG_OpenDeviceByID
	3.3.6 MV_FG_CloseDevice

	3.4 Stream
	3.4.1 MV_FG_GetNumStreams
	3.4.2 MV_FG_GetPayloadSize
	3.4.3 MV_FG_OpenStream
	3.4.4 MV_FG_CloseStream
	3.4.5 MV_FG_StartAcquisition
	3.4.6 MV_FG_StopAcquisition
	3.4.7 MV_FG_GetFrameBuffer
	3.4.8 MV_FG_RegisterFrameCallBack
	3.4.9 MV_FG_ReleaseFrameBuffer
	3.4.10 MV_FG_GetImageBuffer

	3.5 Buffer
	3.5.1 MV_FG_SetBufferNum
	3.5.2 MV_FG_GetBufferChunkData
	3.5.3 MV_FG_AnnounceBuffer
	3.5.4 MV_FG_RevokeBuffer
	3.5.5 MV_FG_FlushQueue
	3.5.6 MV_FG_GetBufferInfo
	3.5.7 MV_FG_QueueBuffer

	3.6 Image Processing
	3.6.1 MV_FG_DisplayOneFrame
	3.6.2 MV_FG_SaveBitmap
	3.6.3 MV_FG_SaveJpeg
	3.6.4 MV_FG_SaveTiffToFile
	3.6.5 MV_FG_SavePngToFile
	3.6.6 MV_FG_ConvertPixelType
	3.6.7 MV_FG_ReconstructImage
	3.6.8 MV_FG_HB_Decode

	3.7 Parameters Control
	3.7.1 MV_FG_GetXMLFile
	3.7.2 MV_FG_GetNodeAccessMode
	3.7.3 MV_FG_GetNodeInterfaceType
	3.7.4 MV_FG_GetIntValue
	3.7.5 MV_FG_SetIntValue
	3.7.6 MV_FG_GetEnumValue
	3.7.7 MV_FG_SetEnumValue
	3.7.8 MV_FG_SetEnumValueByString
	3.7.9 MV_FG_GetFloatValue
	3.7.10 MV_FG_SetFloatValue
	3.7.11 MV_FG_GetBoolValue
	3.7.12 MV_FG_SetBoolValue
	3.7.13 MV_FG_GetStringValue
	3.7.14 MV_FG_SetStringValue
	3.7.15 MV_FG_SetCommandValue
	3.7.16 MV_FG_SetConfigIntValue
	3.7.17 MV_FG_FeatureLoad
	3.7.18 MV_FG_FeatureSave

	3.8 Message Notification
	3.8.1 MV_FG_RegisterExceptionCallBack
	3.8.2 MV_FG_RegisterEventCallBack

	Chapter 4 Data Structure and Enumeration
	4.1 Data Structure
	4.1.1 MV_CML_DEVICE_INFO
	4.1.2 MV_CML_INTERFACE_INFO
	4.1.3 MV_CXP_DEVICE_INFO
	4.1.4 MV_CXP_INTERFACE_INFO
	4.1.5 MV_FG_BUFFER_INFO
	4.1.6 MV_FG_CCM_INFO
	4.1.7 MV_FG_CHUNK_DATA_INFO
	4.1.8 MV_FG_CONVERT_PIXEL_INFO
	4.1.9 MV_FG_DEVICE_INFO
	4.1.10 MV_FG_ENUMVALUE
	4.1.11 MV_FG_EVENT_INFO
	4.1.12 MV_FG_FLOATVALUE
	4.1.13 MV_FG_FRAME_SPEC_INFO
	4.1.14 MV_FG_GAMMA_INFO
	4.1.15 MV_FG_HB_DECODE_PARAM
	4.1.16 MV_FG_INPUT_IMAGE_INFO
	4.1.17 MV_FG_DISPLAY_FRAME_INFO
	4.1.18 MV_FG_INTERFACE_INFO
	4.1.19 MV_FG_INTVALUE
	4.1.20 MV_FG_OUTPUT_IMAGE_INFO
	4.1.21 MV_FG_RECONSTRUCT_INFO
	4.1.22 MV_FG_SAVE_BITMAP_INFO
	4.1.23 MV_FG_SAVE_JPEG_INFO
	4.1.24 MV_FG_SAVE_PNG_TO_FILE_INFO
	4.1.25 MV_FG_SAVE_TIFF_TO_FILE_INFO
	4.1.26 MV_FG_STRINGVALUE
	4.1.27 MV_GEV_DEVICE_INFO
	4.1.28 MV_GEV_INTERFACE_INFO

	4.2 Enumeration
	4.2.1 MV_FG_BUFFER_QUEUE_TYPE
	4.2.2 MV_FG_CFA_METHOD
	4.2.3 MV_FG_CONFIG_CMD
	4.2.4 MV_FG_EXCEPTION_TYPE
	4.2.5 MV_FG_GAMMA_TYPE
	4.2.6 MV_FG_NODE_ACCESS_MODE
	4.2.7 MV_FG_NODE_INTERFACE_TYPE
	4.2.8 MV_FG_PIXEL_TYPE
	4.2.9 MV_FG_RECONSTRUCT_MODE
	4.2.10 MV_FG_RESOLUTION_UNIT

	Chapter 5 Macro Definition
	Appendix A. Sample Code
	A.1 Acquire Images with Callback Function
	A.2 Acquire Images with Internal Buffers
	A.3 Acquire Images with User Registering Buffers
	A.4 Convert Pixel Format
	A.5 Get Chunk Data
	A.6 Load Dynamic Link Library
	A.7 Receive Events

	Appendix B. Error Code

