

Frame Grabber SDK (Windows-C)

Developer Guide

Frame Grabber SDK (Windows-C) Developer Guide

i

Legal Information

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE DOCUMENT IS PROVIDED "AS IS"
AND "WITH ALL FAULTS AND ERRORS". OUR COMPANY MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. IN NO EVENT
WILL OUR COMPANY BE LIABLE FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, OR INDIRECT
DAMAGES, INCLUDING, AMONG OTHERS, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION OR LOSS OF DATA, CORRUPTION OF SYSTEMS, OR LOSS OF DOCUMENTATION,
WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, IN
CONNECTION WITH THE USE OF THE DOCUMENT, EVEN IF OUR COMPANY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES OR LOSS.

Frame Grabber SDK (Windows-C) Developer Guide

ii

Contents

Chapter 1 Overview .. 1

1.1 Introduction ... 1

1.2 Development Environment ... 1

1.3 Update History .. 1

Chapter 2 Basic Process... 3

Chapter 3 API Reference ... 5

3.1 Version Information .. 5

3.1.1 MV_FG_GetSDKVersion .. 5

3.2 Frame Grabber ... 5

3.2.1 MV_FG_UpdateInterfaceList .. 5

3.2.2 MV_FG_ReleaseTLayerResource ... 6

3.2.3 MV_FG_GetNumInterfaces ... 6

3.2.4 MV_FG_GetInterfaceInfo .. 7

3.2.5 MV_FG_OpenInterface .. 7

3.2.6 MV_FG_OpenInterfaceEx .. 7

3.2.7 MV_FG_OpenInterfaceByID .. 8

3.2.8 MV_FG_CloseInterface ... 9

3.3 Device .. 9

3.3.1 MV_FG_UpdateDeviceList .. 9

3.3.2 MV_FG_GetNumDevices ... 10

3.3.3 MV_FG_GetDeviceInfo .. 10

3.3.4 MV_FG_OpenDevice .. 11

3.3.5 MV_FG_OpenDeviceByID .. 11

3.3.6 MV_FG_CloseDevice ... 12

3.4 Stream.. 12

3.4.1 MV_FG_GetNumStreams .. 12

3.4.2 MV_FG_GetPayloadSize ... 12

3.4.3 MV_FG_OpenStream ... 13

3.4.4 MV_FG_CloseStream .. 13

3.4.5 MV_FG_StartAcquisition .. 14

3.4.6 MV_FG_StopAcquisition ... 14

3.4.7 MV_FG_GetFrameBuffer ... 14

Frame Grabber SDK (Windows-C) Developer Guide

iii

3.4.8 MV_FG_RegisterFrameCallBack .. 15

3.4.9 MV_FG_ReleaseFrameBuffer ... 16

3.4.10 MV_FG_GetImageBuffer ... 16

3.5 Buffer ... 17

3.5.1 MV_FG_SetBufferNum .. 17

3.5.2 MV_FG_GetBufferChunkData ... 18

3.5.3 MV_FG_AnnounceBuffer .. 19

3.5.4 MV_FG_RevokeBuffer ... 19

3.5.5 MV_FG_FlushQueue .. 20

3.5.6 MV_FG_GetBufferInfo ... 21

3.5.7 MV_FG_QueueBuffer ... 21

3.6 Image Processing ... 21

3.6.1 MV_FG_DisplayOneFrame .. 21

3.6.2 MV_FG_SaveBitmap .. 22

3.6.3 MV_FG_SaveJpeg ... 22

3.6.4 MV_FG_SaveTiffToFile ... 23

3.6.5 MV_FG_SavePngToFile ... 23

3.6.6 MV_FG_ConvertPixelType .. 24

3.6.7 MV_FG_ReconstructImage ... 24

3.6.8 MV_FG_HB_Decode ... 25

3.7 Parameters Control ... 25

3.7.1 MV_FG_GetXMLFile .. 25

3.7.2 MV_FG_GetNodeAccessMode ... 26

3.7.3 MV_FG_GetNodeInterfaceType .. 27

3.7.4 MV_FG_GetIntValue .. 27

3.7.5 MV_FG_SetIntValue .. 28

3.7.6 MV_FG_GetEnumValue ... 28

3.7.7 MV_FG_SetEnumValue ... 29

3.7.8 MV_FG_SetEnumValueByString .. 29

3.7.9 MV_FG_GetFloatValue .. 30

3.7.10 MV_FG_SetFloatValue .. 30

3.7.11 MV_FG_GetBoolValue ... 31

3.7.12 MV_FG_SetBoolValue ... 31

3.7.13 MV_FG_GetStringValue .. 32

3.7.14 MV_FG_SetStringValue .. 32

Frame Grabber SDK (Windows-C) Developer Guide

iv

3.7.15 MV_FG_SetCommandValue ... 33

3.7.16 MV_FG_SetConfigIntValue ... 33

3.7.17 MV_FG_FeatureLoad ... 34

3.7.18 MV_FG_FeatureSave ... 34

3.8 Message Notification ... 35

3.8.1 MV_FG_RegisterExceptionCallBack .. 35

3.8.2 MV_FG_RegisterEventCallBack ... 36

Chapter 4 Data Structure and Enumeration ... 37

4.1 Data Structure ... 37

4.1.1 MV_CML_DEVICE_INFO .. 37

4.1.2 MV_CML_INTERFACE_INFO ... 38

4.1.3 MV_CXP_DEVICE_INFO ... 38

4.1.4 MV_CXP_INTERFACE_INFO .. 39

4.1.5 MV_FG_BUFFER_INFO .. 39

4.1.6 MV_FG_CCM_INFO .. 40

4.1.7 MV_FG_CHUNK_DATA_INFO .. 41

4.1.8 MV_FG_CONVERT_PIXEL_INFO ... 41

4.1.9 MV_FG_DEVICE_INFO ... 42

4.1.10 MV_FG_ENUMVALUE.. 42

4.1.11 MV_FG_EVENT_INFO .. 43

4.1.12 MV_FG_FLOATVALUE ... 43

4.1.13 MV_FG_FRAME_SPEC_INFO .. 43

4.1.14 MV_FG_GAMMA_INFO .. 44

4.1.15 MV_FG_HB_DECODE_PARAM .. 45

4.1.16 MV_FG_INPUT_IMAGE_INFO ... 45

4.1.17 MV_FG_DISPLAY_FRAME_INFO .. 45

4.1.18 MV_FG_INTERFACE_INFO .. 46

4.1.19 MV_FG_INTVALUE .. 46

4.1.20 MV_FG_OUTPUT_IMAGE_INFO .. 47

4.1.21 MV_FG_RECONSTRUCT_INFO ... 47

4.1.22 MV_FG_SAVE_BITMAP_INFO ... 47

4.1.23 MV_FG_SAVE_JPEG_INFO ... 48

4.1.24 MV_FG_SAVE_PNG_TO_FILE_INFO ... 48

4.1.25 MV_FG_SAVE_TIFF_TO_FILE_INFO.. 49

4.1.26 MV_FG_STRINGVALUE ... 49

Frame Grabber SDK (Windows-C) Developer Guide

v

4.1.27 MV_GEV_DEVICE_INFO ... 49

4.1.28 MV_GEV_INTERFACE_INFO .. 50

4.2 Enumeration .. 51

4.2.1 MV_FG_BUFFER_QUEUE_TYPE .. 51

4.2.2 MV_FG_CFA_METHOD .. 51

4.2.3 MV_FG_CONFIG_CMD ... 52

4.2.4 MV_FG_EXCEPTION_TYPE ... 52

4.2.5 MV_FG_GAMMA_TYPE ... 56

4.2.6 MV_FG_NODE_ACCESS_MODE .. 57

4.2.7 MV_FG_NODE_INTERFACE_TYPE .. 57

4.2.8 MV_FG_PIXEL_TYPE ... 58

4.2.9 MV_FG_RECONSTRUCT_MODE ... 60

4.2.10 MV_FG_RESOLUTION_UNIT ... 61

Chapter 5 Macro Definition ... 62

Appendix A. Sample Code ... 65

A.1 Acquire Images with Callback Function ... 65

A.2 Acquire Images with Internal Buffers ... 75

A.3 Acquire Images with User Registering Buffers .. 85

A.4 Convert Pixel Format .. 95

A.5 Get Chunk Data ... 107

A.6 Load Dynamic Link Library .. 117

A.7 Receive Events .. 129

Appendix B. Error Code ... 140

Frame Grabber SDK (Windows-C) Developer Guide

1

Chapter 1 Overview

The Frame Grabber SDK is a software development kit, which provides unified APIs for the access and
control of frame grabbers. It simplifies the API calling process, and supports operations of multiple
types of frame grabbers at the same time.

1.1 Introduction

This manual mainly introduces the Frame Grabber SDK based on C language, which provides several
APIs for controlling frame grabbers, cameras, and buffers, acquiring images, configuring device
parameters, and processing images.

Note

Now the supported frame grabber types are: GigE, CoaXPress, and Camera Link.

1.2 Development Environment

The development environment of Frame Grabber SDK is shown in the table below.

Frame Grabber Type Item Required

GigE

Hardware PCIe Gen2×4 bus

Software
Microsoft® Windows 7 (32/64-bit)/Windows 10
(32/64-bit)

CoaXPress

Hardware PCIe Gen2×8 bus

Software
Microsoft® Windows 7 (32/64-bit)/Windows 10
(32/64-bit)

Camera Link

Hardware PCIe Gen2×4 bus

Software
Microsoft® Windows 7 (32/64-bit)/Windows 10
(32/64-bit)

1.3 Update History

The update history shows the summary of changes in Frame Grabber SDK with different versions.

Summary of Changes in Version 2.1.0_10/2022

Version Content

1. Added an API for opening a frame grabber according to the frame

Frame Grabber SDK (Windows-C) Developer Guide

2

Version Content

Version 2.1.0_10/2022

grabber ID and specifying its access mode: MV_FG_OpenInterfaceByID.

2. Added an API for opening a device according to the device ID:
MV_FG_OpenDeviceByID.

3. Added an API for saving the TIFF image: MV_FG_SaveTiffToFile.

4. Added an API for saving the PNG image: MV_FG_SavePngToFile.

5. Added an API for decoding the lossless compressed stream:
MV_FG_HB_Decode.

6. Extended the enumeration about exception types:
MV_FG_EXCEPTION_TYPE

7. Added the sample code for event receiving: Receive Events.

Summary of Changes in Version 2.0.0_05/2022
New document.

Frame Grabber SDK (Windows-C) Developer Guide

3

Chapter 2 Basic Process

This chapter mainly introduces the API calling flow of basic process, including the frame grabber
operation, device operation, and image acquisition.
In the figure of API calling flow, APIs in the white area are related to frame grabbers, APIs in the blue
area are related to devices, APIs in orange area are related to stream operations.

Figure 2-1 API Calling Flow of Basic Process

Image Acquisition
Two methods of image acquisition are provided: acquire images directly or acquire images in the
callback function.
● Acquire images directly.

● Start streaming: MV_FG_StartAcquisition.
● Get the image buffer information: MV_FG_GetFrameBuffer.
● Release the image buffer: MV_FG_ReleaseFrameBuffer.

● Acquire images in the callback function.
● Register a callback function for receiving frame buffer information:

MV_FG_RegisterFrameCallBack.
● Start streaming: MV_FG_StartAcquisition.

Frame Grabber SDK (Windows-C) Developer Guide

4

Note

● Above two methods of image acquisition cannot be used at the same time.
● In callback functions, time-consuming operations and thread locks are not recommended, which may

cause blocking.
● The image data in the image buffer structure is a buffer pointer, it is recommended to copy the data

of callback function and use it in another thread.

Frame Grabber SDK (Windows-C) Developer Guide

5

Chapter 3 API Reference

3.1 Version Information

API for getting the SDK version information.

3.1.1 MV_FG_GetSDKVersion

Get the SDK version information.

API Definition
unsigned char* MV_FG_GetSDKVersion();

Return Value
Return the SDK version information in a string.

Remarks
Format: "Version number + Type + Compile time".

3.2 Frame Grabber

APIs for enumerating frame grabbers, acquiring relevant information, enabling/disabling frame
grabbers, and so on.

3.2.1 MV_FG_UpdateInterfaceList

Update the frame grabber list.

API Definition
int MV_FG_UpdateInterfaceList(
 unsigned int nTLayerType,
 bool8_t *pbChanged
);

Parameters

nTLayerType

[IN] Frame grabber type. See Frame Grabber Type for details.

pbChanged

[OUT] Whether the frame grabber list is updated.

Frame Grabber SDK (Windows-C) Developer Guide

6

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This API must be called before any frame grabber operations are performed. The internal list of frame
grabbers will only be updated when this API is called.

3.2.2 MV_FG_ReleaseTLayerResource

Release the frame grabber resource of the specified type.

API Definition
int MV_FG_ReleaseTLayerResource(
 unsigned int nTLayerType
);

Parameters

nTLayerType

[IN] Frame grabber type. See Frame Grabber Type for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
● Before releasing the library MvFGControl.dll, you need to call this API to release all frame grabbers

resources.
● All frame grabbers of the specified type should be disabled before calling this API.
● After disabling the used GigE Vision frame grabber, you need to call this API to release the CTI

resources of frame grabber. Otherwise, the GigE Vision frame grabber cannot be enabled by another
process since the CTI resources are occupied.

3.2.3 MV_FG_GetNumInterfaces

Get the number of frame grabbers.

API Definition
int MV_FG_GetNumInterfaces(
 unsigned int *pnNumIfaces
);

Parameters

pnNumIfaces

[OUT] Number of frame grabbers.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

7

3.2.4 MV_FG_GetInterfaceInfo

Get the frame grabber information by frame grabber index.

API Definition
int MV_FG_GetInterfaceInfo(
 unsigned int nIndex,
 MV_FG_INTERFACE_INFO *pstIfaceInfo
);

Parameters

nIndex

[IN] Frame grabber index, which starts from 0.

pstIfaceInfo

[OUT] Frame grabber information, see MV_FG_INTERFACE_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.2.5 MV_FG_OpenInterface

Open the frame grabber.

API Definition
int MV_FG_OpenInterface(
 unsigned int nIndex,
 IFHANDLE *phIface
);

Parameters

nIndex

[IN] Frame grabber index, which starts from 0.

phIface

[OUT] Frame grabber handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.2.6 MV_FG_OpenInterfaceEx

Open the frame grabber and specify its access mode.

API Definition
int MV_FG_OpenInterfaceEx(
 unsigned int nIndex,

Frame Grabber SDK (Windows-C) Developer Guide

8

 int nAccess,
 IFHANDLE *phIface
);

Parameters

nIndex

[IN] Frame grabber index, which starts from 0.

nAccess

[IN] Access mode. See Frame Grabber Access Mode for details.

phIface

[OUT] Frame grabber handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
● There are three types of access modes: MV_FG_ACCESS_UNKNOWN, MV_FG_ACCESS_READONLY,

and MV_FG_ACCESS_CONTROL.
● CoaXPress frame grabbers and Camera Link frame grabbers can only be enabled with the access

mode MV_FG_ACCESS_CONTROL (i.e., with permission to control).

3.2.7 MV_FG_OpenInterfaceByID

Open the frame grabber according to frame grabber ID and specify its access mode.

API Definition
int MV_FG_OpenInterfaceByID(
 char *pcInterfaceID,
 int nAccess,
 IFHANDLE *phIface
);

Parameters

pcInterfaceID

[IN] Frame grabber ID.

nAccess

[IN] Access mode. See Frame Grabber Access Mode for details.

phIface

[OUT] Frame grabber handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
● There are three types of access modes: MV_FG_ACCESS_UNKNOWN, MV_FG_ACCESS_READONLY,

Frame Grabber SDK (Windows-C) Developer Guide

9

and MV_FG_ACCESS_CONTROL.
● CoaXPress frame grabbers and Camera Link frame grabbers can only be enabled with the access

mode MV_FG_ACCESS_CONTROL (i.e., with permission to control).

3.2.8 MV_FG_CloseInterface

Close the frame grabber.

API Definition
int MV_FG_CloseInterface(
 IFHANDLE phIface
);

Parameters

phIface

[IN] Frame grabber handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.3 Device

APIs for enumerating devices, acquiring relevant information, and opening/closing devices.

3.3.1 MV_FG_UpdateDeviceList

Update the device list of a specified frame grabber.

API Definition
int MV_FG_UpdateDeviceList(
 IFHANDLE hIface,
 bool8_t *pbChanged
);

Parameters

hIface

[IN] Frame grabber handle.

pbChanged

[OUT] Whether the device list is updated.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
The internal list of devices will only be updated when this API is called.

Frame Grabber SDK (Windows-C) Developer Guide

10

3.3.2 MV_FG_GetNumDevices

Get the number of devices of a specified frame grabber.

API Definition
int MV_FG_GetNumDevices(
 IFHANDLE hIface,
 unsigned int *pnNumDevices
);

Parameters

hIface

[IN] Frame grabber handle.

pnNumDevices

[OUT] Number of devices.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.3.3 MV_FG_GetDeviceInfo

Get the device information.

API Definition
int MV_FG_GetDeviceInfo(
 IFHANDLE hIface,
 unsigned int nIndex,
 MV_FG_DEVICE_INFO *pstDevInfo
);

Parameters

hIface

[IN] Frame grabber handle.

nIndex

[IN] Device index, which starts from 0.

pstDevInfo

[OUT] Device information, see MV_FG_DEVICE_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

11

3.3.4 MV_FG_OpenDevice

Open the device according to index.

API Definition
int MV_FG_OpenDevice(
 IFHANDLE hIface,
 unsigned int nIndex,
 DEVHANDLE* phDevice
);

Parameters

hIface

[IN] Frame grabber handle.

nIndex

[IN] Device index, which starts from 0.

phDevice

[OUT] Device handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.3.5 MV_FG_OpenDeviceByID

Open the device according to device ID.

API Definition
int MV_FG_OpenDevice(
 IFHANDLE hIface,
 char *pcDeviceID,
 DEVHANDLE *phDevice
);

Parameters

hIface

[IN] Frame grabber handle.

pcDeviceID

[IN] Device ID.

phDevice

[OUT] Device handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

12

3.3.6 MV_FG_CloseDevice

Close the device module corresponding to the specified device handle.

API Definition
int MV_FG_CloseDevice(
 DEVHANDLE* hDevice
);

Parameters

hDevice

[IN] Device handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4 Stream

APIs for acquiring stream information, enabling/disabling stream channels, and so on.

3.4.1 MV_FG_GetNumStreams

Get the number of stream channels.

API Definition
int MV_FG_GetNumStreams(
 DEVHANDLE hDevice,
 unsigned int *pnNumStreams
);

Parameters

hDevice

[IN] Device handle.

pnNumStreams

[OUT] Number of stream channels.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.2 MV_FG_GetPayloadSize

Get the image size of the stream channel.

API Definition
int MV_FG_GetPayloadSize(

Frame Grabber SDK (Windows-C) Developer Guide

13

 STREAMHANDLE hStream,
 unsigned int *pnPayloadSize
);

Parameters

hStream

[IN] Stream channel handle.

pnPayloadSize

[OUT] Image size of the stream channel.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
The image size of the stream channel needs to be reacquired after the image-related parameters of the
camera are changed, such as width, height, and pixel format.

3.4.3 MV_FG_OpenStream

Open the stream channel.

API Definition
int MV_FG_OpenStream(
 DEVHANDLE hDevice,
 unsigned int nIndex,
 STREAMHANDLE *phStream
);

Parameters

hDevice

[IN] Device handle.

nIndex

[IN] Stream channel index.

phStream

[OUT] Stream channel handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.4 MV_FG_CloseStream

Close the stream channel.

API Definition
int MV_FG_CloseStream(

Frame Grabber SDK (Windows-C) Developer Guide

14

 STREAMHANDLE hStream
);

Parameters

hStream

[IN] Stream channel handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.5 MV_FG_StartAcquisition

Start image acquisition.

API Definition
int MV_FG_StartAcquisition(
 STREAMHANDLE hStream
);

Parameters

hStream

[IN] Stream channel handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.6 MV_FG_StopAcquisition

Stop image acquisition.

API Definition
int MV_FG_StopAcquisition(
 STREAMHANDLE hStream
);

Parameters

hStream

[IN] Stream channel handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.4.7 MV_FG_GetFrameBuffer

Get the buffer information of a frame. This API is valid only when buffers are managed internally by the

Frame Grabber SDK (Windows-C) Developer Guide

15

SDK.

API Definition
int MV_FG_GetFrameBuffer(
 STREAMHANDLE hStream,
 MV_FG_BUFFER_INFO *pstBufferInfo,
 unsigned int nTimeout
);

Parameters

hStream

[IN] Stream channel handle.

pstBufferInfo

[OUT] Buffer information, see MV_FG_BUFFER_INFO for details.

nTimeout

[IN] Timeout, unit: millisecond.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
The API MV_FG_ReleaseFrameBuffer should be called to release the buffer information.

3.4.8 MV_FG_RegisterFrameCallBack

Register the callback function for frame buffer information. This API is valid only when buffers are
managed internally by the SDK.

API Definition
int MV_FG_RegisterFrameCallBack(
 STREAMHANDLE hStream,
 MV_FG_FrameCallBack cbFrame,
 void *pUser
);

Parameters

hStream

[IN] Stream channel handle.

cbFrame

[IN] Frame buffer information callback function.
void (__stdcall *MV_FG_FrameCallBack)(
 MV_FG_BUFFER_INFO *pstBufferInfo,
 void *pUser
)

Frame Grabber SDK (Windows-C) Developer Guide

16

pstBufferInfo

[IN] Frame buffer information, see MV_FG_BUFFER_INFO for details.

pUser

[IN] User-defined data.

pUser

[IN] User-defined data.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks

● Time-consuming operations in the callback function will block the access to the subsequent frame

buffer information.
● This API and the API MV_FG_GetFrameBuffer are mutually exclusive.
● You need to call this API to register the callback function before calling API MV_FG_StartAcquisition.

3.4.9 MV_FG_ReleaseFrameBuffer

Release the buffer information. This API is valid only when buffers are requested internally by the SDK.

API Definition
int MV_FG_ReleaseFrameBuffer(
 STREAMHANDLE hStream,
 MV_FG_BUFFER_INFO *pstBufferInfo
);

Parameters

hStream

[IN] Stream channel handle.

pstBufferInfo

[IN] Buffer information, see MV_FG_BUFFER_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This API and MV_FG_GetFrameBuffer should be used in pair. The image data (pstBufferInfo) obtained
via MV_FG_GetFrameBuffer should be released by this API.

3.4.10 MV_FG_GetImageBuffer

Get the buffer handle of a frame. This API is valid only when buffers are requested and registered to

Frame Grabber SDK (Windows-C) Developer Guide

17

stream channels by the user.

API Definition
int MV_FG_GetImageBuffer(
 STREAMHANDLE hStream,
 BUFFERHANDLE *phBuffer,
 unsigned int nTimeout
);

Parameters

hStream

[IN] Stream channel handle.

phBuffer

[OUT] Buffer handle.

nTimeout

[IN] Timeout, unit: millisecond.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
By calling the API MV_FG_GetBufferInfo, you can get the buffer information with the acquired buffer
handle.

3.5 Buffer

APIs for managing buffers, acquiring relevant information, and so on.

3.5.1 MV_FG_SetBufferNum

Set the number of internal buffers for the SDK.

API Definition
int MV_FG_SetBufferNum(
 STREAMHANDLE hStream,
 unsigned int nBufferNum
);

Parameters

hStream

[IN] Stream channel handle.

nBufferNum

[IN] Number of buffers.

Frame Grabber SDK (Windows-C) Developer Guide

18

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
● The SDK has no internal buffer if this API is not called or the value of parameter nBufferNum is set to

0. When there is no internal buffer, you need to request and register buffers to stream channels
before starting image acquisition.

● When the parameter nBufferNum is set to a value greater than 0, buffers will the allocated internally
by the SDK and it is not allowed to register buffers to stream channels at this time.

● The number of image buffers should be reasonably allocated.

3.5.2 MV_FG_GetBufferChunkData

Get the chunk data information of a buffer.

API Definition
int MV_FG_GetBufferChunkData(
 STREAMHANDLE hStream,
 MV_FG_BUFFER_INFO *pstBufferInfo,
 unsigned int nIndex,
 MV_FG_CHUNK_DATA_INFO *pstChunkDataInfo
);

Parameters

hStream

[IN] Stream channel handle.

pstBufferInfo

[IN] Buffer information, see MV_FG_BUFFER_INFO for details.

nIndex

[IN] Chunk data index.

pstChunkDataInfo

[OUT] Chunk data information, see MV_FG_CHUNK_DATA_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
After getting the buffer information, this API must be called before calling the APIs
MV_FG_ReleaseFrameBuffer and MV_FG_QueueBuffer to get valid information of the chunk data.

Frame Grabber SDK (Windows-C) Developer Guide

19

3.5.3 MV_FG_AnnounceBuffer

Register buffer to the stream channel.

API Definition
int MV_FG_AnnounceBuffer(
 STREAMHANDLE hStream,
 void *pBuffer,
 unsigned int nSize,
 void *pPrivate,
 BUFFERHANDLE *phBuffer
);

Parameters

hStream

[IN] Stream channel handle.

pBuffer

[IN] Image buffer address.

nSize

[IN] Image buffer size.
The image buffer size is acquired by calling the API MV_FG_GetPayloadSize. The private information
is user-defined.

pPrivate

[IN] Private information address.

phBuffer

[OUT] Buffer handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
 This API must be called prior to acquiring images.

3.5.4 MV_FG_RevokeBuffer

Revoke buffer from the stream channel.

API Definition
int MV_FG_RevokeBuffer(
 STREAMHANDLE hStream,
 BUFFERHANDLE hBuffer,
 void **pBuffer,
 void **pPrivate
);

Frame Grabber SDK (Windows-C) Developer Guide

20

Parameters

hStream

[IN] Stream channel handle.

hBuffer

[IN] Buffer handle.

pBuffer

[OUT] Image buffer address.

pPrivate

[OUT] Private information address.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
Only buffers in unused queues can be revoked. You can allocate buffers to unused queues by calling
the API MV_FG_FlushQueue.

3.5.5 MV_FG_FlushQueue

Refresh the buffer queue.

API Definition
int MV_FG_FlushQueue(
 STREAMHANDLE hStream,
 MV_FG_BUFFER_QUEUE_TYPE enQueueType
);

Parameters

hStream

[IN] Stream channel handle.

enQueueType

[IN] Buffer queue type, see MV_FG_BUFFER_QUEUE_TYPE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
The following queue types are not supported during image acquisition:
MV_FG_BUFFER_QUEUE_INPUT_TO_OUTPUT and MV_FG_BUFFER_QUEUE_ALL_DISCARD.

Frame Grabber SDK (Windows-C) Developer Guide

21

3.5.6 MV_FG_GetBufferInfo

Get the buffer information by buffer handle.

API Definition
int MV_FG_GetBufferInfo(
 BUFFERHANDLE hBuffer,
 MV_FG_BUFFER_INFO *pstBufferInfo
);

Parameters

hBuffer

[IN] Buffer handle.

pstBufferInfo

[OUT] Buffer information, see MV_FG_BUFFER_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.5.7 MV_FG_QueueBuffer

Insert the buffer back to the input queue.

API Definition
int MV_FG_QueueBuffer(
 BUFFERHANDLE hBuffer
);

Parameters

hBuffer

[IN] Buffer handle.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6 Image Processing

APIs for displaying a frame of image, saving BMP/JPEG images, converting pixel formats, and so on.

3.6.1 MV_FG_DisplayOneFrame

Display one frame of image.

API Definition
int MV_FG_DisplayOneFrame(

Frame Grabber SDK (Windows-C) Developer Guide

22

 IMAGEHANDLE hImage,
 void *hWnd,
 MV_FG_DISPLAY_FRAME_INFO *pstDisplayFrameInfo
);

Parameters

hImage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

hWnd

[IN] Window handle.

pstDisplayFrameInfo

[IN] Image information to be displayed, see MV_FG_DISPLAY_FRAME_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.2 MV_FG_SaveBitmap

Save the BMP image.

API Definition
int MV_FG_SaveBitmap(
 IMAGEHANDLE hImage,
 MV_FG_SAVE_BITMAP_INFO *pstSaveBitmapInfo
);

Parameters

hImage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstSaveBitmapInfo

[IN][OUT] BMP image information, see MV_FG_SAVE_BITMAP_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.3 MV_FG_SaveJpeg

Save the JPEG image.

API Definition
int MV_FG_SaveJpeg(
 IMAGEHANDLE hImage,
 MV_FG_SAVE_JPEG_INFO *pstSaveJpegInfo
);

Frame Grabber SDK (Windows-C) Developer Guide

23

Parameters

hImage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstSaveJpegInfo

[IN][OUT] JPEG image information, see MV_FG_SAVE_JPEG_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.4 MV_FG_SaveTiffToFile

Save the TIFF image.

API Definition
int MV_FG_SaveTiffToFile(
 IMAGEHANDLE hImage,
 MV_FG_SAVE_TIFF_TO_FILE_INFO *pstSaveTiffInfo
);

Parameters

hImage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstSaveTiffInfo

[IN][OUT] TIFF image information, see MV_FG_SAVE_TIFF_TO_FILE_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.5 MV_FG_SavePngToFile

Save the PNG image.

API Definition
int MV_FG_SavePngToFile(
 IMAGEHANDLE hImage,
 MV_FG_SAVE_PNG_TO_FILE_INFO *pstSavePngInfo
);

Parameters

hImage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstSavePngInfo

[IN][OUT] PNG image information, see MV_FG_SAVE_PNG_TO_FILE_INFO for details.

Frame Grabber SDK (Windows-C) Developer Guide

24

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.6 MV_FG_ConvertPixelType

Convert the pixel format.

API Definition
int MV_FG_ConvertPixelType(
 IMAGEHANDLE hImage,
 MV_FG_CONVERT_PIXEL_INFO *pstConvertPixelInfo
);

Parameters

hImage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstConvertPixelInfo

[IN][OUT] Pixel format conversion information, see MV_FG_CONVERT_PIXEL_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.6.7 MV_FG_ReconstructImage

Reconstruct images.

API Definition
int MV_FG_ReconstructImage(
 IMAGEHANDLE hImage,
 MV_FG_RECONSTRUCT_INFO *pstReconstructInfo
);

Parameters

hImage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstReconstructInfo

[IN][OUT] Image reconstruction information, see MV_FG_RECONSTRUCT_INFO for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
● Image rotation, image flipping, and image splitting are supported, but the specific precondition is

required.
● The supported pixel formats of image rotation and image flipping are: MV_FG_PIXEL_TYPE_Mono8,

Frame Grabber SDK (Windows-C) Developer Guide

25

MV_FG_PIXEL_TYPE_RGB8_Packed, and MV_FG_PIXEL_TYPE_BGR8_Packed.
● Image splitting supports all pixel formats.

3.6.8 MV_FG_HB_Decode

Decode the lossless compressed stream.

API Definition
int __stdcall MV_FG_HB_Decode(
 IMAGEHANDLE hImage,
 MV_FG_HB_DECODE_PARAM *pstDecodeParam
);

Parameters

hImage

[IN] Image handle. You can use the handle of frame grabbers, devices, or stream channels.

pstDecodeParam

[IN][OUT] Structure about lossless decoding parameters. See MV_FG_HB_DECODE_PARAM for
details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
● This API is used to decode the lossless compressed stream obtained from cameras into raw data.
● This API also supports parsing the watermark information of real-time image for the current camera.

If the input lossless stream is not from the current camera or not obtained in real time, the
watermark parsing may fail. To parse the watermark information, you should input the handle of
current camera, otherwise, only lossless decoding will be performed if you input the frame grabber
handle or stream handle.

3.7 Parameters Control

APIs for getting XML files of frame grabbers and cameras, getting and setting the device parameters,
and saving and loading the device features.

3.7.1 MV_FG_GetXMLFile

Get the XML file of frame grabbers / devices.

API Definition
int MV_FG_GetXMLFile(
 PORTHANDLE hPort,
 unsigned char *pData,
 unsigned int nDataSize,
 unsigned int *pnDataLen

Frame Grabber SDK (Windows-C) Developer Guide

26

);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

pData

[IN][OUT] Address of the buffer in which the XML file is stored.

nDataSize

[IN] Size of the buffer in which the XML file is stored.

pnDataLen

[OUT] Length of the XML file.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.2 MV_FG_GetNodeAccessMode

Get the access mode of a node.

API Definition
int MV_FG_GetNodeAccessMode(
 PORTHANDLE hPort,
 const char *strName,
 MV_FG_NODE_ACCESS_MODE *penAccessMode
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strName

[IN] Node name.

penAccessMode

[OUT] Access mode of the node, see MV_FG_NODE_ACCESS_MODE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
To get the access mode of the EnumEntry type node, the input value for strName should be in the
format "EnumEntry_NodeName_EnumEntryName". For example, to get the access mode of the node
MV_FG_PIXEL_TYPE_Mono8 of the enumeration MV_FG_PIXEL_TYPE, the strName should be
"EnumEntry_PixelFormat_Mono8".

Frame Grabber SDK (Windows-C) Developer Guide

27

3.7.3 MV_FG_GetNodeInterfaceType

Get the type of a node.

API Definition
int MV_FG_GetNodeInterfaceType(
 PORTHANDLE hPort,
 const char *strName,
 MV_FG_NODE_INTERFACE_TYPE *penInterfaceType
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strName

[IN] Node name.

penInterfaceType

[OUT] Type of the node, see MV_FG_NODE_INTERFACE_TYPE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.4 MV_FG_GetIntValue

Get the information about an integer type node.

API Definition
int MV_FG_GetIntValue(
 PORTHANDLE hPort,
 const char *strKey,
 MV_FG_INTVALUE *pstIntValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

pstIntValue

[OUT] Information about the integer type node, see MV_FG_INTVALUE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

28

3.7.5 MV_FG_SetIntValue

Set the information of an integer type node.

API Definition
int MV_FG_SetIntValue(
 PORTHANDLE hPort,
 const char *strKey,
 int64_t nValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

nValue

[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.6 MV_FG_GetEnumValue

Get the information about an enumerated type node.

API Definition
int MV_FG_GetEnumValue(
 PORTHANDLE hPort,
 const char *strKey,
 MV_FG_ENUMVALUE *pstEnumValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

pstEnumValue

[OUT] Information about the enumerated type node, see MV_FG_ENUMVALUE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

29

3.7.7 MV_FG_SetEnumValue

Set the information of an enumerated type node.

API Definition
int MV_FG_SetEnumValue(
 PORTHANDLE hPort,
 const char *strKey,
 unsigned int nValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

nValue

[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.8 MV_FG_SetEnumValueByString

Set the information of an enumeration type node by string.

API Definition
int MV_FG_SetEnumValueByString(
 PORTHANDLE hPort,
 const char *strKey,
 const char *strValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

strValue

[IN] Values (input as strings) to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

30

3.7.9 MV_FG_GetFloatValue

Get the information about a float type node.

API Definition
int MV_FG_GetFloatValue(
 PORTHANDLE hPort,
 const char *strKey,
 MV_FG_FLOATVALUE *pstFloatValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

pstFloatValue

[OUT] Information about the float type node, see MV_FG_FLOATVALUE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.10 MV_FG_SetFloatValue

Set the information of a float type node.

API Definition
int MV_FG_SetFloatValue(
 PORTHANDLE hPort,
 const char *strKey,
 float fValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

fValue

[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

31

3.7.11 MV_FG_GetBoolValue

Get the information about a boolean type node.

API Definition
int MV_FG_GetBoolValue(
 PORTHANDLE hPort,
 const char *strKey,
 bool8_t *pbValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

pstIntValue

[OUT] Information about the boolean type node.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.12 MV_FG_SetBoolValue

Set the information of a boolean type node.

API Definition
int MV_FG_SetBoolValue(
 PORTHANDLE hPort,
 const char *strKey,
 bool8_t bValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

bValue

[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

32

3.7.13 MV_FG_GetStringValue

Get the information about a string type node.

API Definition
int MV_FG_GetStringValue(
 PORTHANDLE hPort,
 const char *strKey,
 MV_FG_STRINGVALUE *pstStringValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

pstStringValue

[OUT] Information about the string type node, see MV_FG_STRINGVALUE for details.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

3.7.14 MV_FG_SetStringValue

Set the information of a string type node.

API Definition
int MV_FG_SetStringValue(
 PORTHANDLE hPort,
 const char *strKey,
 const char *strValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strKey

[IN] Node name.

strValue

[IN] Value to be set.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

33

3.7.15 MV_FG_SetCommandValue

Execute the commands of a command type node.

API Definition
int MV_FG_SetCommandValue(
 PORTHANDLE hPort,
 const char *strKey
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be only a device.

strKey

[IN] Node name.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This API is supported by Camera Link cameras.

3.7.16 MV_FG_SetConfigIntValue

Set a custom value for an integer type of node.

API Definition
int MV_FG_SetConfigIntValue(
 PORTHANDLE hPort,
 MV_FG_CONFIG_CMD enConfigCmd,
 int64_t nValue
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

enConfigCmd

[IN] Configuration command, see MV_FG_CONFIG_CMD for details.

nValue

[IN] Value to be set. Range: [MV_FG_BAUDRATE_9600, MV_FG_BAUDRATE_AUTOMAX], the default
value is MV_FG_BAUDRATE_115200.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Frame Grabber SDK (Windows-C) Developer Guide

34

3.7.17 MV_FG_FeatureLoad

Import the device features.

API Definition
int MV_FG_FeatureLoad(
 PORTHANDLE hPort,
 const char *strFileName
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strFileName

[IN] Name of the file in which the device attributes and features are stored (only supports English).

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This API is not supported by Camera Link cameras.

3.7.18 MV_FG_FeatureSave

Save the device features.

API Definition
int MV_FG_FeatureSave(
 PORTHANDLE hPort,
 const char *strFileName
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be either a frame grabber or
a device.

strFileName

[IN] Name of the file in which the device attributes and features will be saved (only supports English).

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
This API is not supported by Camera Link cameras.

Frame Grabber SDK (Windows-C) Developer Guide

35

3.8 Message Notification

APIs for registering the callback function for exceptions and events.

3.8.1 MV_FG_RegisterExceptionCallBack

Register the callback function for exception information.

API Definition
int MV_FG_RegisterExceptionCallBack(
 PORTHANDLE hPort,
 MV_FG_ExceptionCallBack cbException,
 void *pUser
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be a frame grabber, device,
or stream channel.

cbException

[IN] Exception information callback function.
void (__stdcall *MV_FG_ExceptionCallBack)(
 MV_FG_EXCEPTION_TYPE enExceptionType,
 void *pUser
)

enExceptionType

[IN] Exception type information, see MV_FG_EXCEPTION_TYPE for details.

pUser

[IN] User-defined data.

pUser

[IN] User-defined data.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
● Processing time-consuming operations in the callback function will block the access to the

subsequent exception information.
● This API is available for the exception callback of frame grabbers, devices, and stream channels. The

type of registered callback function varies according to the handle type.

Frame Grabber SDK (Windows-C) Developer Guide

36

3.8.2 MV_FG_RegisterEventCallBack

Register the callback function for events.

API Definition
int MV_FG_RegisterEventCallBack(
 PORTHANDLE hPort,
 const char *strEventName,
 MV_FG_EventCallBack cbEvent,
 void *pUser
);

Parameters

hPort

[IN] Handle of the object to which the parameter belongs; the object can be a frame grabber, device,
or stream channel.

strEventName

[IN] Event name.

cbEvent

[IN] Events callback function.
void (__stdcall *MV_FG_EventCallBack)(
 MV_FG_EVENT_INFO *pstEventInfo,
 void *pUser
)

pstEventInfo

[IN] Events information, see MV_FG_EVENT_INFO for details.

pUser

[IN] User-defined data.

pUser

[IN] User-defined data.

Return Value
Return MV_FG_SUCCESS on success, and return Error Code on failure.

Remarks
● Processing time-consuming operations in the callback function will block the access to the

subsequent events information.
● This API is available for the event callback of frame grabbers, devices, and stream channels. The

type of registered callback function varies according to the handle type.Now the frame grabber
offline event is not supported. After upgrading the frame grabber, you need to restart the PC before
use.

Frame Grabber SDK (Windows-C) Developer Guide

37

Chapter 4 Data Structure and Enumeration

4.1 Data Structure

4.1.1 MV_CML_DEVICE_INFO

Structure about Camera Link Device Information

Member Data Type Description

chVendorName unsigned char[]
Device vendor name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chModelName unsigned char
Device model name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chManufacturerInfo unsigned char
Device manufacturer information, the length is
defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

chDeviceVersion unsigned char
Device version, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chSerialNumber unsigned char
Device serial number, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chUserDefinedName unsigned char
User-defined name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chDeviceID unsigned char
Device ID, the length is defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

nReserved[48] unsigned int[] Reserved.

Frame Grabber SDK (Windows-C) Developer Guide

38

4.1.2 MV_CML_INTERFACE_INFO

Structure about Camera Link Frame Grabber Information

Member Data Type Description

chInterfaceID unsigned char[]
Frame grabber ID, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

chDisplayName unsigned char[]
Displayed name, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

chSerialNumber unsigned char[]
Serial number, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

nPCIEInfo unsigned int

Information about the PCIe slot of the frame
grabber. The lower 16 bits are valid bits: bits 0 to 2
indicate function, bits 3 to 7 indicate device, and bits
8 to 15 indicate bus.

nReserved[64] unsigned int[] Reserved.

4.1.3 MV_CXP_DEVICE_INFO

Structure about CoaXPress Device Information

Member Data Type Description

chVendorName unsigned char[]
Device vendor name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chModelName unsigned char[]
Device model name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chManufacturerInfo unsigned char[]
Device manufacturer information, the length is
defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

chDeviceVersion unsigned char[]
Device version, the length is defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

chSerialNumber unsigned char[]
Device serial number, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chUserDefinedNam
e

unsigned char[]
User-defined name, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the value
is 64).

chDeviceID unsigned char[] Device ID, the length is defined by the macro

Frame Grabber SDK (Windows-C) Developer Guide

39

Member Data Type Description

"MV_FG_MAX_DEV_INFO_SIZE" (the value is 64).

nReserved[48] unsigned int[] Reserved.

4.1.4 MV_CXP_INTERFACE_INFO

Structure about CoaXPress Frame Grabber Information

Member Data Type Description

chInterfaceID unsigned char[]
Frame grabber ID, the length is defined by the
macro "MV_FG_MAX_IF_INFO_SIZE" (the value is
64).

chDisplayName unsigned char[]
Displayed name, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

chSerialNumber unsigned char[]
Serial number, the length is defined by the macro
"MV_FG_MAX_IF_INFO_SIZE" (the value is 64).

nPCIEInfo unsigned int

Information about the PCIe slot of the frame
grabber. The lower 16 bits are valid bits: bits 0 to 2
indicate function, bits 3 to 7 indicate device, and
bits 8 to 15 indicate bus.

nReserved[64] unsigned int[] Reserved.

4.1.5 MV_FG_BUFFER_INFO

Structure about Output Frame Buffer Information

Member Data Type Description

pBuffer void* Image buffer address.

nSize unsigned int Size of the image buffer address.

nFilledSize unsigned int Frame length.

pPrivate void* Private data.

nWidth unsigned int Image width.

nHeight unsigned int Image height.

enPixelType MV_FG_PIXEL_TYPE Pixel format.

bNewData bool Whether it is a new image.

bQueued bool Whether it is in the image acquisition queue.

Frame Grabber SDK (Windows-C) Developer Guide

40

Member Data Type Description

bAcquiring bool Whether the image is being acquired.

bIncomplete bool Whether the image acquisition is incomplete.

nFrameID int64_t Frame No.

nDevTimeStamp int64_t Device timestamp.

nHostTimeStamp int64_t Host timestamp.

nNumChunks unsigned int Number of chunks.

nChunkPayloadSize unsigned int Size of chunk payloads.

nSecondCount unsigned int Seconds (time scale).

nCycleCount unsigned int Cycle count (time scale).

nCycleOffset unsigned int Cycle offset (time scale).

fGain float Gain.

fExposureTime float Exposure time.

nAverageBrightness unsigned int Average brightness.

nFrameCounter unsigned int Total number of frames.

nTriggerIndex unsigned int Trigger count.

nInput unsigned int Input.

nOutput unsigned int Output.

nRed unsigned int Red (white balance).

nGreen unsigned int Green (white balance).

nBlue unsigned int Blue (white balance).

nOffsetX unsigned int ROI x-offset.

nOffsetY unsigned int ROI y-offset.

nChunkWidth unsigned int ROI width.

nChunkHeight unsigned int ROI height.

nReserved[45] unsigned int[] Reserved.

4.1.6 MV_FG_CCM_INFO

Structure about Color Correction Matrix (CCM) Information

Member Data Type Description

bCCMEnable bool32_t Whether to enable CCM.

Frame Grabber SDK (Windows-C) Developer Guide

41

Member Data Type Description

nCCMat[9] int[]
Color correction matrix.

Range of value: (-65536, 65536).

nCCMScale unsigned int
Quantized coefficient, which is an integral
power of 2 and the maximum value is 65536.

nReserved[4] unsigned int[] Reserved.

4.1.7 MV_FG_CHUNK_DATA_INFO

Structure about Chunk Data Information

Member Data Type Description

pChunkData unsigned char* Chunk data.

nChunkID unsigned int Chunk ID.

nChunkLen unsigned int Chunk length.

nReserved[4] unsigned int[] Reserved.

4.1.8 MV_FG_CONVERT_PIXEL_INFO

Structure about Pixel Format Conversion Information

Member Data Type Description

stInputImageInfo MV_FG_INPUT_IMAGE_INFO Input image information.

stOutputImageInfo MV_FG_OUTPUT_IMAGE_INFO Output image information.

enCfaMethod MV_FG_CFA_METHOD Interpolation method.

bFilterEnable bool32_t
Whether smooth interpolation is
enabled.

stGammaInfo MV_FG_GAMMA_INFO Gamma information.

stCCMInfo MV_FG_CCM_INFO
Color Correction Matrix (CCM)
information. It is supported by
Windows only.

nReserved[4] unsigned int[] Reserved.

Frame Grabber SDK (Windows-C) Developer Guide

42

4.1.9 MV_FG_DEVICE_INFO

Structure about Device Information

Member Data Type Description

nDevType unsigned int Device type.

nReserved[3] unsigned int[] Reserved.

DevInfo

union {

MV_CXP_DEVICE_INFO
stCXPDevInfo;

MV_GEV_DEVICE_INFO
stGEVDevInfo;

MV_CML_DEVICE_INFO
stCMLDevInfo;

unsigned int nReserved[256];

}

Device information. The member to be
used is determined by nDevType.

stCXPDevInfo: CoaXPress device
information.

stGEVDevInfo: GigE Vision device
information.

stCMLDevInfo: Camera Link device
information.

4.1.10 MV_FG_ENUMVALUE

Structure about Enumeration Type Value

Member Data Type Description

nCurValue unsigned int Current value.

strCurSymbolic char[]

The node name (property key) of the current
value, the length is defined by the macro
"MV_FG_MAX_SYMBOLIC_STRLEN" (the value is
64).

nSupportedNum unsigned int The number of supported enumeration types.

nSupportValue unsigned int[]

The value of supported enumeration types, the
number is defined by the macro
"MV_FG_MAX_SYMBOLIC_NUM" (the value is
64).

strSymbolic char[]

The node name (property key) of the value of
supported enumeration types. The number is
defined by the macro
"MV_FG_MAX_SYMBOLIC_NUM" (the value is 64)
and the length is defined by the macro
"MV_FG_MAX_SYMBOLIC_STRLEN" (the value is
64).

Frame Grabber SDK (Windows-C) Developer Guide

43

Member Data Type Description

nReserved[4] unsigned int[] Reserved.

4.1.11 MV_FG_EVENT_INFO

Structure about Event Information

Member Data Type Description

EventName char[]
Event name, the maximum length is 128 bytes
(value of macro
"MV_FG_MAX_EVENT_NAME_SIZE").

nEventID unsigned int Event ID.

nBlockID uint64_t Frame No., valid for stream-related events.

nTimestamp uint64_t Timestamp.

pEventData void*
Event data, which is an internal buffer and needs
to be processed in time.

nEventDataSize unsigned int Length of event data.

nReserved[4] unsigned int[] Reserved.

4.1.12 MV_FG_FLOATVALUE

Structure about Float Type Value

Member Data Type Description

fCurValue float Current value.

fMax float The maximum value.

fMin float The minimum value.

nReserved[4] unsigned int[] Reserved.

4.1.13 MV_FG_FRAME_SPEC_INFO

Structure about Watermark Information

Member Data Type Description

nSecondCount unsigned int Seconds.

Frame Grabber SDK (Windows-C) Developer Guide

44

Member Data Type Description

nCycleCount unsigned int Number of cycles.

nCycleOffset unsigned int The offset of a cycle.

fGain float Gain.

fExposureTime float Exposure time.

nAverageBrightness unsigned int Average brightness.

nRed unsigned int Red.

nGreen unsigned int Green.

nBlue unsigned int Blue.

nFrameCounter unsigned int Total number of frames.

nTriggerIndex unsigned int Trigger counting.

nInput unsigned int Input.

nOutput unsigned int Output.

nOffsetX unsigned short Offset in the x coordinate.

nOffsetY unsigned short Offset in the y coordinate.

nFrameWidth unsigned short Watermark width.

nFrameHeight unsigned short Watermark height.

nReserved[16] unsigned int[] Reserved.

4.1.14 MV_FG_GAMMA_INFO

Structure about Gamma Information

Note

When setting the Gamma curve correction, the valid corrected curve is required.

Member Data Type Description

enGammaType MV_FG_GAMMA_TYPE Gamma type.

fGammaValue float
Gamma value.

Value range: [0.1, 4.0]

pGammaCurveBuf unsigned char* Gamma curve buffer.

nGammaCurveBufLen unsigned int Length of gamma curve.

nReserved[4] unsigned int[] Reserved.

Frame Grabber SDK (Windows-C) Developer Guide

45

4.1.15 MV_FG_HB_DECODE_PARAM

Structure about Lossless Decoding Parameters

Member Data Type Description

pSrcBuf unsigned char* Input data buffer.

nSrcLen unsigned int Input data size.

stOutputImageInfo MV_FG_OUTPUT_IMAGE_INFO Output image information.

stFrameSpecInfo MV_FG_FRAME_SPEC_INFO
Watermark information. (Not
supported.)

nRes[8] unsigned int[] Reserved.

4.1.16 MV_FG_INPUT_IMAGE_INFO

Structure about Input Image Information

Member Data Type Description

nWidth unsigned int Image width.

nHeight unsigned int Image height.

enPixelType MV_FG_PIXEL_TYPE Pixel format.

pImageBuf unsigned char* Input image buffer.

nImageBufLen unsigned int Input image length.

nReserved[4] unsigned int[] Reserved.

4.1.17 MV_FG_DISPLAY_FRAME_INFO

Structure about the Displayed Image Information

Member Data Type Description

nWidth unsigned int Image width.

nHeight unsigned int Image height.

enPixelType MV_FG_PIXEL_TYPE Pixel format.

pImageBuf unsigned char* Input image buffer.

nImageBufLen unsigned int Input image length.

Frame Grabber SDK (Windows-C) Developer Guide

46

Member Data Type Description

nReserved[4] unsigned int[] Reserved.

4.1.18 MV_FG_INTERFACE_INFO

Structure about Frame Grabber Information

Member Data Type Description

nTLayerType unsigned int
Frame grabber type. See Frame Grabber
Type for details.

nReserved[4] unsigned int[] Reserved.

IfaceInfo

union {

MV_CXP_INTERFACE_INFO
stCXPIfaceInfo;

MV_GEV_INTERFACE_INFO
stGEVIfaceInfo;

MV_GEV_INTERFACE_INFO
stCMLIfaceInfo;

unsigned int nReserved[256];

}

Frame grabber information. The member to
be used is determined by nTLayerType.

stCXPIfaceInfo: CoaXPress frame grabber
information.

stGEVIfaceInfo: GigE Vision frame grabber
information.

stCMLIfaceInfo: Camera Link frame
grabber information.

4.1.19 MV_FG_INTVALUE

Structure about Integer Type Value

Member Data Type Description

nCurValue int64_t Current value.

nMax int64_t The maximum value.

nMin int64_t The minimum value.

nInc int64_t Increment.

nReserved[16] unsigned int[] Reserved.

Frame Grabber SDK (Windows-C) Developer Guide

47

4.1.20 MV_FG_OUTPUT_IMAGE_INFO

Structure about Output Image Information

Member Data Type Description

nWidth unsigned int Image width.

nHeight unsigned int Image height.

enPixelType MV_FG_PIXEL_TYPE Pixel format.

pImageBuf unsigned char* Image buffer.

nImageBufSize unsigned int Image buffer size.

nImageBufLen unsigned int Image length.

nReserved[4] unsigned int[] Reserved.

4.1.21 MV_FG_RECONSTRUCT_INFO

Structure about Image Reconstruction Information

Member Data Type Description

stInputImageInfo MV_FG_INPUT_IMAGE_INFO Input image information.

stOutputImageInfo
MV_FG_OUTPUT_IMAGE_INF
O

Output image information, the
maximum number of images is
defined by the macro
"MV_FG_MAX_SPLIT_NUM" (the
value is 8).

enReconstructMode
MV_FG_RECONSTRUCT_MOD
E

Image reconstruction mode.

nReserved[4] unsigned int[] Reserved.

4.1.22 MV_FG_SAVE_BITMAP_INFO

Structure about BMP Image Saving Information

Member Data Type Description

stInputImageInfo MV_FG_INPUT_IMAGE_INFO Input image information.

pBmpBuf unsigned char* Buffer of output BMP image.

nBmpBufSize unsigned int Size of output buffer.

Frame Grabber SDK (Windows-C) Developer Guide

48

Member Data Type Description

nBmpBufLen unsigned int Length of output BMP image.

enCfaMethod MV_FG_CFA_METHOD Interpolation method.

nReserved[4] unsigned int[] Reserved.

4.1.23 MV_FG_SAVE_JPEG_INFO

Structure about JPEG Image Saving Information

Member Data Type Description

stInputImageInfo MV_FG_INPUT_IMAGE_INFO Input image information.

pJpgBuf unsigned char* Buffer of output JPEG image.

nJpgBufSize unsigned int Size of output buffer.

nJpgBufLen unsigned int Length of output JPEG image.

nJpgQuality unsigned int
Encoding quality.

Range of value: (0, 100].

enCfaMethod MV_FG_CFA_METHOD Interpolation method.

nReserved[4] unsigned int[] Reserved.

4.1.24 MV_FG_SAVE_PNG_TO_FILE_INFO

Structure about PNG Image Saving Information

Member Data Type Description

stInputImageInfo MV_FG_INPUT_IMAGE_INFO Input image information.

pcImagePath char* Path of the input image.

nPngCompression unsigned int
Encoding compression rate,
range: [0, 9].

enCfaMethod MV_FG_CFA_METHOD Interpolation method.

nReserved[4] unsigned int[] Reserved.

Frame Grabber SDK (Windows-C) Developer Guide

49

4.1.25 MV_FG_SAVE_TIFF_TO_FILE_INFO

Structure about TIFF Image Saving Information

Member Data Type Description

stInputImageInfo MV_FG_INPUT_IMAGE_INFO Input image information.

pcImagePath char* Path of the input image.

fXResolution float Horizontal resolution.

fYResolution float Vertical resolution.

enResolutionUnit MV_FG_RESOLUTION_UNIT Resolution unit.

enCfaMethod MV_FG_CFA_METHOD Interpolation method.

nReserved[4] unsigned int[] Reserved.

4.1.26 MV_FG_STRINGVALUE

Structure about String Type Value

Member Data Type Description

strCurValue[256] char Current value.

nMaxLength int64_t The maximum length.

nReserved[4] unsigned int[] Reserved.

4.1.27 MV_GEV_DEVICE_INFO

Structure about GigE Vision Device Information

Member Data Type Description

nIpCfgOption unsigned int IP configurations supported by the device.

nIpCfgCurrent unsigned int Current IP configuration.

nCurrentIp unsigned int Current IP address.

nCurrentSubNetMask unsigned int Current subnet mask.

nDefultGateWay unsigned int Current gateway.

nNetExport unsigned int Network interface IP address.

nMacAddress uint64_t MAC address.

Frame Grabber SDK (Windows-C) Developer Guide

50

Member Data Type Description

chVendorName unsigned char[]
Device vendor name, the length is defined by
the macro "MV_FG_MAX_DEV_INFO_SIZE"
(the value is 64).

chModelName unsigned char[]
Device model name, the length is defined by
the macro "MV_FG_MAX_DEV_INFO_SIZE"
(the value is 64).

chManufacturerInfo unsigned char[]

Device manufacturer information, the length
is defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is
64).

chDeviceVersion unsigned char[]
Device version, the length is defined by the
macro "MV_FG_MAX_DEV_INFO_SIZE" (the
value is 64).

chSerialNumber unsigned char[]

Device serial number, the length is defined
by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is
64).

chUserDefinedName unsigned char[]
User-defined name, the length is defined by
the macro "MV_FG_MAX_DEV_INFO_SIZE"
(the value is 64).

chDeviceID unsigned char[]
Device ID, the length is defined by the macro
"MV_FG_MAX_DEV_INFO_SIZE" (the value is
64).

nReserved[48] unsigned int[] Reserved.

4.1.28 MV_GEV_INTERFACE_INFO

Structure about GigE Vision Frame Grabber Information

Member Data Type Description

chInterfaceID unsigned char[]
Frame grabber ID, the length is defined by
the macro "MV_FG_MAX_IF_INFO_SIZE"
(the value is 64).

chDisplayName unsigned char[]
Displayed name, the length is defined by
the macro "MV_FG_MAX_IF_INFO_SIZE"
(the value is 64).

chSerialNumber unsigned char[]
Serial number, the length is defined by the
macro "MV_FG_MAX_IF_INFO_SIZE" (the
value is 64).

nPCIEInfo unsigned int Information about the PCIe slot of the

Frame Grabber SDK (Windows-C) Developer Guide

51

Member Data Type Description

frame grabber. The lower 16 bits are valid
bits: bits 0 to 2 indicate function, bits 3 to 7
indicate device, and bits 8 to 15 indicate
bus.

nReserved[64] unsigned int[] Reserved.

4.2 Enumeration

4.2.1 MV_FG_BUFFER_QUEUE_TYPE

Enumeration about the types of buffer queues.

Enumeration Type Value Description

MV_FG_BUFFER_QUEUE_INPUT_TO_OUTPUT 0
Flush buffers from the input
queue to the output queue.

MV_FG_BUFFER_QUEUE_OUTPUT_DISCARD 1
Discard buffers in the output
queue.

MV_FG_BUFFER_QUEUE_ALL_TO_INPUT 2
Flush all buffers (including those
in the output queue) to the input
queue.

MV_FG_BUFFER_QUEUE_UNQUEUED_TO_INPUT 3
Flush unused buffers to the input
queue.

MV_FG_BUFFER_QUEUE_ALL_DISCARD 4
Discard all queued buffers (those
in the input queue and the output
queue).

4.2.2 MV_FG_CFA_METHOD

Enumeration about the Color Filter Array (CFA) interpolation methods.

Enumeration Type Value Description

MV_FG_CFA_METHOD_QUICK 0 Quick interpolation.

MV_FG_CFA_METHOD_BALANCE 1 Balanced interpolation.

MV_FG_CFA_METHOD_OPTIMAL 2 Optimal interpolation.

Frame Grabber SDK (Windows-C) Developer Guide

52

4.2.3 MV_FG_CONFIG_CMD

Enumeration about the configuration command.

Enumeration Type Value Description

CONFIG_CMD_INT64_BAUDRATE 1 Baud rate (integer type).

4.2.4 MV_FG_EXCEPTION_TYPE

Enumeration about Exception Types

Enumeration Type Value Description

EXCEPTION_TYPE_SYSTEM_TEMPERATURE_UPLI
MIT

0x0080
The temperature reached the
upper limit.

EXCEPTION_TYPE_SYSTEM_TEMPERATURE_LOW
LIMIT

0x0081
The temperature reached the
lower limit.

EXCEPTION_TYPE_SYSTEM_DDR_INIT 0x0082 DDR initialization failed.

EXCEPTION_TYPE_CARD_PACKETBUF_ERR 0x0180 Packet buffer error.

EXCEPTION_TYPE_CARD_ACKPACKETBUF_ERR 0x0181 Response packet buffer error.

EXCEPTION_TYPE_LINK0_STREAM_CRC_ERR 0x1080
Link0 stream CRC verification
error.

EXCEPTION_TYPE_LINK0_STREAM_PACKET_RES
END

0x1081 Link0 stream packet resending.

EXCEPTION_TYPE_LINK0_STREAM_CTRLPACKET
_ERR

0x1082 Link0 control packet error.

EXCEPTION_TYPE_LINK0_PRETREATBUF_ERR 0x1090 Link0 pretreatment buffer error.

EXCEPTION_TYPE_LINK0_CAM_ACK_RECVBUF_E
RR

0x1091
Buffer of receiving Link0 camera
ack packet error.

EXCEPTION_TYPE_LINK0_CAM_ACK_TRANSMITB
UF_ERR

0x1092
Buffer of transmitting Link0
camera packet error.

EXCEPTION_TYPE_LINK1_STREAM_CRC_ERR 0x1180
Link1 stream CRC verification
error.

EXCEPTION_TYPE_LINK1_STREAM_PACKET_RES
END

0x1181 Link1 stream packet resending.

EXCEPTION_TYPE_LINK1_STREAM_CTRLPACKET
_ERR

0x1182 Link1 control packet error.

EXCEPTION_TYPE_LINK1_PRETREATBUF_ERR 0x1190 Link1 pretreatment buffer error.

Frame Grabber SDK (Windows-C) Developer Guide

53

Enumeration Type Value Description

EXCEPTION_TYPE_LINK1_CAM_ACK_RECVBUF_E
RR

0x1191
Buffer of receiving Link1 camera
ack packet error.

EXCEPTION_TYPE_LINK1_CAM_ACK_TRANSMITB
UF_ERR

0x1192
Buffer of transmitting Link1
camera packet error.

EXCEPTION_TYPE_LINK2_STREAM_CRC_ERR 0x1280
Link2 stream CRC verification
error.

EXCEPTION_TYPE_LINK2_STREAM_PACKET_RES
END

0x1281 Link2 stream packet resending.

EXCEPTION_TYPE_LINK2_STREAM_CTRLPACKET
_ERR

0x1282 Link2 control packet error.

EXCEPTION_TYPE_LINK2_PRETREATBUF_ERR 0x1290 Link2 pretreatment buffer error.

EXCEPTION_TYPE_LINK2_CAM_ACK_RECVBUF_E
RR

0x1291
Buffer of receiving Link2 camera
ack packet error.

EXCEPTION_TYPE_LINK2_CAM_ACK_TRANSMITB
UF_ERR

0x1292
Buffer of transmitting Link2
camera packet error.

EXCEPTION_TYPE_LINK3_STREAM_CRC_ERR 0x1380
Link3 stream CRC verification
error.

EXCEPTION_TYPE_LINK3_STREAM_PACKET_RES
END

0x1381 Link3 stream packet resending.

EXCEPTION_TYPE_LINK3_STREAM_CTRLPACKET
_ERR

0x1382 Link3 control packet error.

EXCEPTION_TYPE_LINK3_PRETREATBUF_ERR 0x1390 Link3 pretreatment buffer error.

EXCEPTION_TYPE_LINK3_CAM_ACK_RECVBUF_E
RR

0x1391
Buffer of receiving Link3 camera
ack packet error.

EXCEPTION_TYPE_LINK3_CAM_ACK_TRANSMITB
UF_ERR

0x1392
Buffer of transmitting Link3
camera packet error.

EXCEPTION_TYPE_STREAM0_DROP_FRAME_IMA
GE

0x2080 Stream0 channel frame dropping.

EXCEPTION_TYPE_STREAM0_IMAGE_DATACOUN
T_ERR

0x2081
Image data counting error of
Stream0 channel.

EXCEPTION_TYPE_STREAM0_DROP_FRAME_TRIG
GER

0x2082
Stream0 channel frame dropping
triggered.

EXCEPTION_TYPE_STREAM0_QUEUEBUF_ERR 0x2090 Stream0 QUEUE buffer error.

EXCEPTION_TYPE_STREAM0_WDMABUF_ERR 0x2091 Stream0 WDMA buffer error.

EXCEPTION_TYPE_STREAM0_RDMABUF_ERR 0x2092 Stream0 RDMA buffer error.

EXCEPTION_TYPE_STREAM0_PACKETBUF_ERR 0x2093 Stream0 PACKET buffer error.

EXCEPTION_TYPE_STREAM0_WDMALENGTH_ERR 0x2094 Stream0 WDMA length error.

Frame Grabber SDK (Windows-C) Developer Guide

54

Enumeration Type Value Description

EXCEPTION_TYPE_STREAM0_RDMALENGTH_ERR 0x2095 Stream0 RDMA length error.

EXCEPTION_TYPE_STREAM1_DROP_FRAME_IMA
GE

0x2180 Stream1 channel frame dropping.

EXCEPTION_TYPE_STREAM1_IMAGE_DATACOUN
T_ERR

0x2181
Image data counting error of
Stream1 channel.

EXCEPTION_TYPE_STREAM1_DROP_FRAME_TRIG
GER

0x2182
Stream1 channel frame dropping
triggered.

EXCEPTION_TYPE_STREAM1_QUEUEBUF_ERR 0x2190 Stream1 QUEUE buffer error.

EXCEPTION_TYPE_STREAM1_WDMABUF_ERR 0x2191 Stream1 WDMA buffer error.

EXCEPTION_TYPE_STREAM1_RDMABUF_ERR 0x2192 Stream1 RDMA buffer error.

EXCEPTION_TYPE_STREAM1_PACKETBUF_ERR 0x2193 Stream1 PACKET buffer error.

EXCEPTION_TYPE_STREAM1_WDMALENGTH_ERR 0x2194 Stream1 WDMA length error.

EXCEPTION_TYPE_STREAM1_RDMALENGTH_ERR 0x2195 Stream1 RDMA length error.

EXCEPTION_TYPE_STREAM2_DROP_FRAME_IMA
GE

0x2280 Stream2 channel frame dropping.

EXCEPTION_TYPE_STREAM2_IMAGE_DATACOUN
T_ERR

0x2281
Image data counting error of
Stream2 channel.

EXCEPTION_TYPE_STREAM2_DROP_FRAME_TRIG
GER

0x2282
Stream2 channel frame dropping
triggered.

EXCEPTION_TYPE_STREAM2_QUEUEBUF_ERR 0x2290 Stream2 QUEUE buffer error.

EXCEPTION_TYPE_STREAM2_WDMABUF_ERR 0x2291 Stream2 WDMA buffer error.

EXCEPTION_TYPE_STREAM2_RDMABUF_ERR 0x2292 Stream2 RDMA buffer error.

EXCEPTION_TYPE_STREAM2_PACKETBUF_ERR 0x2293 Stream2 PACKET buffer error.

EXCEPTION_TYPE_STREAM2_WDMALENGTH_ERR 0x2294 Stream2 WDMA length error.

EXCEPTION_TYPE_STREAM2_RDMALENGTH_ERR 0x2295 Stream2 RDMA length error.

EXCEPTION_TYPE_STREAM3_DROP_FRAME_IMA
GE

0x2380 Stream3 channel frame dropping.

EXCEPTION_TYPE_STREAM3_IMAGE_DATACOUN
T_ERR

0x2381
Image data counting error of
Stream3 channel.

EXCEPTION_TYPE_STREAM3_DROP_FRAME_TRIG
GER

0x2382
Stream3 channel frame dropping
triggered.

EXCEPTION_TYPE_STREAM3_QUEUEBUF_ERR 0x2390 Stream3 QUEUE buffer error.

EXCEPTION_TYPE_STREAM3_WDMABUF_ERR 0x2391 Stream3 WDMA buffer error.

EXCEPTION_TYPE_STREAM3_RDMABUF_ERR 0x2392 Stream3 RDMA buffer error.

EXCEPTION_TYPE_STREAM3_PACKETBUF_ERR 0x2393 Stream3 PACKET buffer error.

Frame Grabber SDK (Windows-C) Developer Guide

55

Enumeration Type Value Description

EXCEPTION_TYPE_STREAM3_WDMALENGTH_ERR 0x2394 Stream3 WDMA length error.

EXCEPTION_TYPE_STREAM3_RDMALENGTH_ERR 0x2395 Stream3 RDMA length error.

EXCEPTION_TYPE_PCIE_SCHEDULEBUF_ERR 0x3088 Scheduling module error.

EXCEPTION_TYPE_PCIE_SCHEDULE_ERR 0x3089 Scheduling result error.

EXCEPTION_TYPE_PCIE_LINK0_RECVBUF_ERR 0x3180 Link0 receiving buffer error.

EXCEPTION_TYPE_PCIE_LINK0_LENGTH_ERR 0x3181 Link0 control packet length error.

EXCEPTION_TYPE_PCIE_LINK0_SOFT_RECVBUF_E
RR

0x3280 Link0 soft receiving buffer error.

EXCEPTION_TYPE_PCIE_LINK0_SOFT_LENGTH_E
RR

0x3281
Link0 soft control packet length
error.

EXCEPTION_TYPE_PCIE_LINK1_RECVBUF_ERR 0x3188 Link1 receiving buffer error.

EXCEPTION_TYPE_PCIE_LINK1_LENGTH_ERR 0x3189 Link1 control packet length error.

EXCEPTION_TYPE_PCIE_LINK1_SOFT_RECVBUF_E
RR

0x3288 Link1 soft receiving buffer error.

EXCEPTION_TYPE_PCIE_LINK1_SOFT_LENGTH_E
RR

0x3289
Link1 soft control packet length
error.

EXCEPTION_TYPE_PCIE_LINK2_RECVBUF_ERR 0x3190 Link2 receiving buffer error.

EXCEPTION_TYPE_PCIE_LINK2_LENGTH_ERR 0x3191 Link2 control packet length error.

EXCEPTION_TYPE_PCIE_LINK2_SOFT_RECVBUF_E
RR

0x3290 Link2 soft receiving buffer error.

EXCEPTION_TYPE_PCIE_LINK2_SOFT_LENGTH_E
RR

0x3291
Link2 soft control packet length
error.

EXCEPTION_TYPE_PCIE_LINK3_RECVBUF_ERR 0x3198 Link3 receiving buffer error.

EXCEPTION_TYPE_PCIE_LINK3_LENGTH_ERR 0x3199 Link3 control packet length error.

EXCEPTION_TYPE_PCIE_LINK3_SOFT_RECVBUF_E
RR

0x3298 Link3 soft receiving buffer error.

EXCEPTION_TYPE_PCIE_LINK3_SOFT_LENGTH_E
RR

0x3299
Link3 soft control packet length
error.

EXCEPTION_TYPE_PCIE_STREAM0_RECVBUF_ER
R

0x3382
FIFO error of stream in Stream0
buffer.

EXCEPTION_TYPE_PCIE_STREAM0_LIST_ERR 0x3383 Invalid list format of Stream0.

EXCEPTION_TYPE_PCIE_STREAM0_SIZE_ERR 0x3384
Stream0 image size and memory
mismatched.

EXCEPTION_TYPE_PCIE_STREAM1_RECVBUF_ER
R

0x338A
FIFO error of stream in Stream1
buffer.

EXCEPTION_TYPE_PCIE_STREAM1_LIST_ERR 0x338B Invalid list format of Stream1.

Frame Grabber SDK (Windows-C) Developer Guide

56

Enumeration Type Value Description

EXCEPTION_TYPE_PCIE_STREAM1_SIZE_ERR 0x338C
Stream1 image size and memory
mismatched.

EXCEPTION_TYPE_PCIE_STREAM2_RECVBUF_ER
R

0x3392
FIFO error of stream in Stream2
buffer.

EXCEPTION_TYPE_PCIE_STREAM2_LIST_ERR 0x3393 Invalid list format of Stream2.

EXCEPTION_TYPE_PCIE_STREAM2_SIZE_ERR 0x3394
Stream2 image size and memory
mismatched.

EXCEPTION_TYPE_PCIE_STREAM3_RECVBUF_ER
R

0x339A
FIFO error of stream in Stream3
buffer.

EXCEPTION_TYPE_PCIE_STREAM3_LIST_ERR 0x339B Invalid list format of Stream3.

EXCEPTION_TYPE_PCIE_STREAM3_SIZE_ERR 0x339C
Stream3 image size and memory
mismatched.

EXCEPTION_TYPE_CAMERA_DISCONNECT_ERR
0x100000
01

Camera disconnected.

4.2.5 MV_FG_GAMMA_TYPE

Enumeration about the Gamma types.

Enumeration Type Value Description

MV_FG_GAMMA_TYPE_NONE 0 Disabled.

MV_FG_GAMMA_TYPE_VALUE 1 Gamma value.

MV_FG_GAMMA_TYPE_USER_CURVE 2

Gamma curve, which has the
following possibilities:

● When the output image is 8-bit,
the curve length is 256 * size of
(unsigned char);

● When the output image is 10-bit,
the curve length varies according
to the input image.
○ Source image format is 10-bit,

the curve length is
1024*sizeof(unsigned short);

○ Source image format is 12-bit,
the curve length is
4096*sizeof(unsigned short);

○ Source image format is 16-bit,
the curve length is
65536*sizeof(unsigned short).

Frame Grabber SDK (Windows-C) Developer Guide

57

Enumeration Type Value Description

MV_FG_GAMMA_TYPE_LRGB2SRGB 3 Linear RGB to sRGB conversion.

MV_FG_GAMMA_TYPE_SRGB2LRGB 4

sRGB to linear RGB conversion. It is
supported only for color
interpolation and is invalid for color
correction.

4.2.6 MV_FG_NODE_ACCESS_MODE

Enumeration about the access modes of a node.

Enumeration Type Value Description

ACCESS_MODE_NI 0 Not implemented.

ACCESS_MODE_NA 1 Not available.

ACCESS_MODE_WO 2 Write only.

ACCESS_MODE_RO 3 Read only.

ACCESS_MODE_RW 4 Read and write.

ACCESS_MODE_UNDEFINED 5 Undefined.

4.2.7 MV_FG_NODE_INTERFACE_TYPE

Enumeration about the types of a node.

Enumeration Type Value Description

INTERFACE_TYPE_Value 0 Value

INTERFACE_TYPE_Base 1 Base

INTERFACE_TYPE_Integer 2 Integer

INTERFACE_TYPE_Boolean 3 Boolean

INTERFACE_TYPE_Command 4 Command

INTERFACE_TYPE_Float 5 Float

INTERFACE_TYPE_String 6 String

INTERFACE_TYPE_Register 7 Register

INTERFACE_TYPE_Category 8 Category

INTERFACE_TYPE_Enumeration 9 Enumeration

Frame Grabber SDK (Windows-C) Developer Guide

58

Enumeration Type Value Description

INTERFACE_TYPE_EnumEntry 10 EnumEntry

INTERFACE_TYPE_Port 11 Port

4.2.8 MV_FG_PIXEL_TYPE

Enumeration about the pixel formats.

Enumeration Type Value Description

Undefined Format

MV_FG_PIXEL_TYPE_Undefined 0xFFFFFFFF Undefined format.

Mono Format

MV_FG_PIXEL_TYPE_Mono8
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(8) | 0x0001

Mono8

MV_FG_PIXEL_TYPE_Mono10
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0003

Mono10

MV_FG_PIXEL_TYPE_Mono10_Pac
ked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0004

Mono10_Packed

MV_FG_PIXEL_TYPE_Mono12
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0005

Mono12

MV_FG_PIXEL_TYPE_Mono12_Pac
ked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0006

Mono12_Packed

MV_FG_PIXEL_TYPE_Mono16
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0007

Mono16

Bayer Format

MV_FG_PIXEL_TYPE_BayerGR8
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(8) | 0x0008

BayerGR8

MV_FG_PIXEL_TYPE_BayerRG8
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(8) | 0x0009

BayerRG8

MV_FG_PIXEL_TYPE_BayerGB8
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(8) | 0x000A

BayerGB8

MV_FG_PIXEL_TYPE_BayerBG8
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(8) | 0x000B

BayerBG8

MV_FG_PIXEL_TYPE_BayerGR10
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x000C

BayerGR10

MV_FG_PIXEL_TYPE_BayerRG10
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x000D

BayerRG10

MV_FG_PIXEL_TYPE_BayerGB10 MV_FG_PIXEL_MONO | BayerGB10

Frame Grabber SDK (Windows-C) Developer Guide

59

Enumeration Type Value Description

MV_FG_PIXEL_BIT_COUNT(16) | 0x000E

MV_FG_PIXEL_TYPE_BayerBG10
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x000F

BayerBG10

MV_FG_PIXEL_TYPE_BayerGR12
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0010

BayerGR12

MV_FG_PIXEL_TYPE_BayerRG12
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0011

BayerRG12

MV_FG_PIXEL_TYPE_BayerGB12
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0012

BayerGB12

MV_FG_PIXEL_TYPE_BayerBG12
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0013

BayerBG12

MV_FG_PIXEL_TYPE_BayerGR10_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0026

BayerGR10_Packed

MV_FG_PIXEL_TYPE_BayerRG10_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0027

BayerRG10_Packed

MV_FG_PIXEL_TYPE_BayerGB10_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0028

BayerGB10_Packed

MV_FG_PIXEL_TYPE_BayerBG10_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x0029

BayerBG10_Packed

MV_FG_PIXEL_TYPE_BayerGR12_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x002A

BayerGR12_Packed

MV_FG_PIXEL_TYPE_BayerRG12_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x002B

BayerRG12_Packed

MV_FG_PIXEL_TYPE_BayerGB12_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x002C

BayerGB12_Packed

MV_FG_PIXEL_TYPE_BayerBG12_P
acked

MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(12) | 0x002D

BayerBG12_Packed

MV_FG_PIXEL_TYPE_BayerGR16
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x002E

BayerGR16

MV_FG_PIXEL_TYPE_BayerRG16
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x002F

BayerRG16

MV_FG_PIXEL_TYPE_BayerGB16
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0030

BayerGB16

MV_FG_PIXEL_TYPE_BayerBG16
MV_FG_PIXEL_MONO |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0031

BayerBG16

RGB Format

MV_FG_PIXEL_TYPE_RGB8_Packe
d

MV_FG_PIXEL_COLOR |
MV_FG_PIXEL_BIT_COUNT(24) | 0x0014

RGB8_Packed

MV_FG_PIXEL_TYPE_BGR8_Packe MV_FG_PIXEL_COLOR | BGR8_Packed

Frame Grabber SDK (Windows-C) Developer Guide

60

Enumeration Type Value Description

d MV_FG_PIXEL_BIT_COUNT(24) | 0x0015

MV_FG_PIXEL_TYPE_RGBA8_Pack
ed

MV_FG_PIXEL_COLOR |
MV_FG_PIXEL_BIT_COUNT(32) | 0x0016

RGBA8_Packed

MV_FG_PIXEL_TYPE_BGRA8_Pack
ed

MV_FG_PIXEL_COLOR |
MV_FG_PIXEL_BIT_COUNT(32) | 0x0017

BGRA8_Packed

MV_FG_PIXEL_TYPE_RGB16_Pack
ed

MV_FG_PIXEL_COLOR |
MV_FG_PIXEL_BIT_COUNT(48) | 0x0033

RGB16_Packed

YUV Format

MV_FG_PIXEL_TYPE_YUV422_Pac
ked

MV_FG_PIXEL_COLOR |
MV_FG_PIXEL_BIT_COUNT(16) | 0x001F

YUV422_Packed

MV_FG_PIXEL_TYPE_YUV422_YUY
V_Packed

MV_FG_PIXEL_COLOR |
MV_FG_PIXEL_BIT_COUNT(16) | 0x0032

YUV422_YUYV_Pac
ked

4.2.9 MV_FG_RECONSTRUCT_MODE

Enumeration about the image reconstruction modes.

Enumeration Type Value Description

Rotation Mode

The supported pixel formats of rotation mode are: MV_FG_PIXEL_TYPE_Mono8,
MV_FG_PIXEL_TYPE_RGB8_Packed, and MV_FG_PIXEL_TYPE_BGR8_Packed.

RECONSTRUCT_MODE_ROTATE_90 MV_FG_ROTATE_MODE | 0x0001 Rotate 90 degrees.

RECONSTRUCT_MODE_ROTATE_18
0

MV_FG_ROTATE_MODE | 0x0002 Rotate 180 degrees.

RECONSTRUCT_MODE_ROTATE_27
0

MV_FG_ROTATE_MODE | 0x0003 Rotate 270 degrees.

Flip Mode

The supported pixel formats of flip mode are: MV_FG_PIXEL_TYPE_Mono8,
MV_FG_PIXEL_TYPE_RGB8_Packed, and MV_FG_PIXEL_TYPE_BGR8_Packed.

RECONSTRUCT_MODE_FLIP_VERTI
CAL

MV_FG_FLIP_MODE | 0x0001 Vertical flip.

RECONSTRUCT_MODE_FLIP_HORIZ
ONTAL

MV_FG_FLIP_MODE | 0x0002 Horizontal flip.

Split by Row

This mode is supported by line scan cameras only.

RECONSTRUCT_MODE_SPLIT_BY_L
INE_2

MV_FG_SPLIT_BY_LINE_MODE |
0x0002

Split into 2 images by row.

Frame Grabber SDK (Windows-C) Developer Guide

61

Enumeration Type Value Description

RECONSTRUCT_MODE_SPLIT_BY_L
INE_3

MV_FG_SPLIT_BY_LINE_MODE |
0x0003

Split into 3 images by row.

RECONSTRUCT_MODE_SPLIT_BY_L
INE_4

MV_FG_SPLIT_BY_LINE_MODE |
0x0004

Split into 4 images by row.

4.2.10 MV_FG_RESOLUTION_UNIT

Enumeration About Resolution Unit

Enumeration Type Macro Definition Value Description

MV_FG_Resolution_Unit_None 1 No unit.

MV_FG_Resolution_Unit_Inch 2 Inch.

MV_FG_Resolution_Unit_CENTI
METER

3 Centimeter.

Frame Grabber SDK (Windows-C) Developer Guide

62

Chapter 5 Macro Definition

Table 5-1 Handle Type

Type Definition Description

IFHANDLE Frame grabber handle.

DEVHANDLE Device handle.

STREAMHANDLE Stream channel handle.

BUFFERHANDLE Buffer handle.

PORTHANDLE
Parameter handle. It is the handle of the object to which the
parameter belongs; the object can be a frame grabber, device, or
stream channel.

IMAGEHANDLE
Image handle. It is the handle of the object to which the image
belongs; the object can be a frame grabber, device, or stream
channel.

Table 5-2 Frame Grabber Type

Macro Value Description

MV_FG_GEV_INTERFACE 0x00000001 GigE Vision frame grabber.

MV_FG_U3V_INTERFACE 0x00000002 USB3 Vision frame grabber.

MV_FG_CAMERALINK_INTERFA
CE

0x00000004 Camera Link frame grabber.

MV_FG_CXP_INTERFACE 0x00000008 CoaXPress frame grabber.

Table 5-3 Frame Grabber Access Mode

Macro Value Description

MV_FG_ACCESS_UNKNOWN 0x0 Permission undefined.

MV_FG_ACCESS_READONLY 0x1
Read only; no permission to set or get node
values.

MV_FG_ACCESS_CONTROL 0x2 Permission to control.

Table 5-4 Device Type

Macro Value Description

MV_FG_GEV_DEVICE 0x00000001 GigE Vision device.

MV_FG_U3V_DEVICE 0x00000002 USB3 Vision device.

MV_FG_CAMERALINK_DEVICE 0x00000003 Camera Link device.

MV_FG_CXP_DEVICE 0x00000004 CoaXPress device.

Frame Grabber SDK (Windows-C) Developer Guide

63

Table 5-5 Pixel Format

Macro Value Description

MV_FG_PIXEL_MONO 0x01000000 Monochrome format.

MV_FG_PIXEL_COLOR 0x02000000 Color format.

MV_FG_PIXEL_CUSTOM 0x80000000 Custom format.

MV_FG_PIXEL_BIT_COUNT(n) ((n) << 16) Location of the number of bits.

Table 5-6 Flag Bit of GigE Vision Device

Macro Value Description

MV_FG_GEV_IFCONFIG_LLA_BI
T

0x00000004 Whether LLA is enabled.

MV_FG_GEV_IFCONFIG_DHCP_
BIT

0x00000002 Whether DHCP is enabled.

MV_FG_GEV_IFCONFIG_PERSIS
TENT_BIT

0x00000001 Whether static IP is enabled.

MV_FG_GEV_IFCONFIG_PR_BIT 0x80000000
Whether pause frames can be
processed.

MV_FG_GEV_IFCONFIG_PG_BIT 0x40000000
Whether pause frames can be
generated.

Table 5-7 Maximum Value

Macro Value Description

MV_FG_MAX_IF_INFO_SIZE 64
The maximum length of string for frame
grabber information.

MV_FG_MAX_DEV_INFO_SIZE 64
The maximum length of string for device
information.

MV_FG_MAX_EVENT_NAME_SI
ZE

128 The maximum length of event name.

MV_FG_MAX_SYMBOLIC_NUM 64
The maximum number of node names
(property keys) for the XML description file.

MV_FG_MAX_SYMBOLIC_STRL
EN

64
The maximum length for node names
(property keys) of the XML description file.

Table 5-8 Image Reconstruction

Macro Value Description

MV_FG_MAX_SPLIT_NUM 8
The maximum number of images to split a
source image into.

MV_FG_ROTATE_MODE 0x1000 Rotation mode.

MV_FG_FLIP_MODE 0x2000 Flip mode.

Frame Grabber SDK (Windows-C) Developer Guide

64

Macro Value Description

MV_FG_SPLIT_BY_LINE_MODE 0x3000 Split by row.

Table 5-9 Baud Rate

Macro Value Description

MV_FG_BAUDRATE_9600 0x00000001 9600

MV_FG_BAUDRATE_19200 0x00000002 19200

MV_FG_BAUDRATE_38400 0x00000004 38400

MV_FG_BAUDRATE_57600 0x00000008 57600

MV_FG_BAUDRATE_115200 0x00000010 115200

MV_FG_BAUDRATE_230400 0x00000020 230400

MV_FG_BAUDRATE_460800 0x00000040 460800

MV_FG_BAUDRATE_921600 0x00000080 921600

MV_FG_BAUDRATE_AUTOMAX 0x40000000
Auto-negotiated maximum value
supported by the camera.

Frame Grabber SDK (Windows-C) Developer Guide

65

Appendix A. Sample Code

A.1 Acquire Images with Callback Function

The following sample codes show how to acquire images using callback functions.
#include <stdio.h>
#include <Windows.h>
#include <process.h>
#include <conio.h>
#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define FILE_NAME_LEN 256 // The maximum length of file name

// User-defined parameters.
typedef struct _Callback_UserParam_
{
 DEVHANDLE hDevice; // Device handle
 MV_FG_SAVE_JPEG_INFO stSaveJpegInfo; // JPEG image saving information
}Callback_User;

// Wait for key press.
void WaitForKeyPress(void)
{
 while(!_kbhit())
 {
 Sleep(10);
 }
 _getch();
}

// Clear residual data from stdin.
void ClearStdin(void)
{
 char c = '\0';

 while (1)
 {
 c = getchar();
 if ('\n' == c || EOF == c)
 {
 break;
 }
 }
}

Frame Grabber SDK (Windows-C) Developer Guide

66

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)
{
 switch(enExceptionType)
 {
 case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
 {
 printf("Exception: Interface Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_DEVICE_DISCONNECT:
 {
 printf("Exception: Device Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
 {
 printf("Exception: Abnormal Image!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
 {
 printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_DISCONNECTED:
 {
 printf("Exception: Stream Disconnected!\n");
 break;
 }
 default:
 {
 printf("Unknown Exception!\n");
 break;
 }
 }
}

// Save the original JPEG image data.
void SaveJpegImage(unsigned char* pJpgBuf, unsigned int nJpegSize)
{
 if (NULL != pJpgBuf && 0 < nJpegSize)
 {
 char szFileName[FILE_NAME_LEN] = { 0 };

 SYSTEMTIME sys;
 GetLocalTime(&sys);
 sprintf_s(szFileName, FILE_NAME_LEN, "Image_%04d%02d%02d%02d%02d%02d%04d.jpg",
sys.wYear, sys.wMonth,
 sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);

Frame Grabber SDK (Windows-C) Developer Guide

67

 FILE* pImageFile = NULL;
 if ((0 != fopen_s(&pImageFile, szFileName, "wb")) || (NULL == pImageFile))
 {
 return;
 }

 fwrite(pJpgBuf, 1, nJpegSize, pImageFile);
 fclose(pImageFile);
 }
}

// Frame buffer information callback function.
void FrameCb(MV_FG_BUFFER_INFO* pstBufferInfo, void* pUser)
{
 if (pstBufferInfo && pUser)
 {
 Callback_User* pstUser = (Callback_User*)pUser;
 int nRet = 0;
 DEVHANDLE hDevice = pstUser->hDevice;
 MV_FG_SAVE_JPEG_INFO stSaveJpegInfo = pstUser->stSaveJpegInfo;

 printf("FrameNumber:%2I64d%, Width:%d, Height:%d\n", pstBufferInfo->nFrameID,
pstBufferInfo->nWidth, pstBufferInfo->nHeight);
 stSaveJpegInfo.stInputImageInfo.pImageBuf = (unsigned char*)pstBufferInfo->pBuffer;
 stSaveJpegInfo.stInputImageInfo.nImageBufLen = pstBufferInfo->nFilledSize;
 stSaveJpegInfo.stInputImageInfo.nHeight = pstBufferInfo->nHeight;
 stSaveJpegInfo.stInputImageInfo.nWidth = pstBufferInfo->nWidth;
 stSaveJpegInfo.stInputImageInfo.enPixelType = pstBufferInfo->enPixelType;

 unsigned int nSize = pstBufferInfo->nHeight * pstBufferInfo->nWidth * 2;
 if (stSaveJpegInfo.nJpgBufSize < nSize)
 {
 if (stSaveJpegInfo.pJpgBuf)
 {
 free (stSaveJpegInfo.pJpgBuf);
 stSaveJpegInfo.pJpgBuf = NULL;
 }
 stSaveJpegInfo.pJpgBuf = (unsigned char*)malloc(nSize);
 if (NULL == stSaveJpegInfo.pJpgBuf)
 {
 printf("malloc pConvertData fail!\n");
 nRet = MV_FG_ERR_RESOURCE_EXHAUSTED;
 return;
 }
 stSaveJpegInfo.nJpgBufSize = nSize;
 }

 stSaveJpegInfo.nJpgBufLen = 0;
 stSaveJpegInfo.enCfaMethod = MV_FG_CFA_METHOD_OPTIMAL;

Frame Grabber SDK (Windows-C) Developer Guide

68

 stSaveJpegInfo.nJpgQuality = 60;

 nRet = MV_FG_SaveJpeg(hDevice, &stSaveJpegInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Save Jpeg failed! %#x\n", nRet);
 }
 else
 {
 SaveJpegImage(stSaveJpegInfo.pJpgBuf, stSaveJpegInfo.nJpgBufLen);
 }
 }
 return;
}

// Print frame grabber information.
bool PrintInterfaceInfo(unsigned int nInterfaceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nInterfaceNum; i++)
 {
 MV_FG_INTERFACE_INFO stInterfaceInfo = { 0 };

 nRet = MV_FG_GetInterfaceInfo(i, &stInterfaceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d interface failed! %#x\n", i, nRet);
 return false;
 }

 switch (stInterfaceInfo.nTLayerType)
 {
 case MV_FG_CXP_INTERFACE:
 {
 printf("[CXP]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_INTERFACE:
 {
 printf("[GEV]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chSerialNumber);
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

69

 case MV_FG_CAMERALINK_INTERFACE:
 {
 printf("[CML]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown interface type.\n");
 return false;
 }
 }
 }

 return true;
}

// Print device information.
bool PrintDeviceInfo(IFHANDLE hInterface, unsigned int nDeviceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nDeviceNum; i++)
 {
 MV_FG_DEVICE_INFO stDeviceInfo = { 0 };

 nRet = MV_FG_GetDeviceInfo(hInterface, i, &stDeviceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d device failed! %#x\n", i, nRet);
 return false;
 }

 switch (stDeviceInfo.nDevType)
 {
 case MV_FG_CXP_DEVICE:
 {
 printf("[CXP]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCXPDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_DEVICE:
 {
 printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,

Frame Grabber SDK (Windows-C) Developer Guide

70

 stDeviceInfo.DevInfo.stGEVDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chModelName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_DEVICE:
 {
 printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCMLDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown device type.\n");
 return false;
 }
 }
 }

 return true;
}

int main()
{
 int nRet = 0;
 IFHANDLE hInterface = NULL;
 DEVHANDLE hDevice = NULL;
 STREAMHANDLE hStream = NULL;

 do
 {
 // Enumerate frame grabbers.
 bool bChanged = false;
 nRet = MV_FG_UpdateInterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update interface list failed! %#x\n", nRet);
 break;
 }

 // Get the number of frame grabbers.
 unsigned int nInterfaceNum = 0;
 nRet = MV_FG_GetNumInterfaces(&nInterfaceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)
 {
 printf("No interface found! return = %d, number = %d\n", nRet, nInterfaceNum);
 break;

Frame Grabber SDK (Windows-C) Developer Guide

71

 }

 // Display frame grabber information.
 if (false == PrintInterfaceInfo(nInterfaceNum))
 {
 break;
 }

 // Select frame grabber.
 int nInterfaceIndex = -1;
 printf("Select an interface: ");
 scanf_s("%d", &nInterfaceIndex);
 ClearStdin();

 if (nInterfaceIndex < 0 || nInterfaceIndex >= (int)nInterfaceNum)
 {
 printf("Invalid interface index.\nQuit.\n");
 break;
 }

 // Enable the frame grabber and get the frame grabber handle.
 nRet = MV_FG_OpenInterface((unsigned int)nInterfaceIndex, &hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d interface failed! %#x\n", nInterfaceIndex, nRet);
 break;
 }

 // Register the exception information callback function of the frame grabber.
 //nRet = MV_FG_RegisterExceptionCallBack(hInterface, ExceptionCb, hInterface);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register interface exception callback failed!\n");
 // break;
 //}

 // Enumerate cameras of the frame grabber.
 nRet = MV_FG_UpdateDeviceList(hInterface, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update device list failed! %#x\n", nRet);
 break;
 }

 // Get the number of devices.
 unsigned int nDeviceNum = 0;
 nRet = MV_FG_GetNumDevices(hInterface, &nDeviceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)
 {
 printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
 break;

Frame Grabber SDK (Windows-C) Developer Guide

72

 }

 // Display device information.
 if (false == PrintDeviceInfo(hInterface, nDeviceNum))
 {
 break;
 }

 // Select device.
 int nDeviceIndex = -1;
 printf("Select a device: ");
 scanf_s("%d", &nDeviceIndex);
 ClearStdin();

 if (nDeviceIndex < 0 || nDeviceIndex >= (int)nDeviceNum)
 {
 printf("Invalid device index.\nQuit.\n");
 break;
 }

 // Open the device and get the device handle.
 nRet = MV_FG_OpenDevice(hInterface, (unsigned int)nDeviceIndex, &hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d device failed! %#x\n", nDeviceIndex, nRet);
 hDevice = NULL;
 break;
 }

 // Register the exception information callback function of the device.
 //nRet = MV_FG_RegisterExceptionCallBack(hDevice, ExceptionCb, hDevice);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register device exception callback failed!\n");
 // break;
 //}

 // Disable trigger mode.
 nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Turn off trigger mode failed! %#x\n", nRet);
 break;
 }

 // Get the number of stream channels.
 unsigned int nStreamNum = 0;
 nRet = MV_FG_GetNumStreams(hDevice, &nStreamNum);
 if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)
 {
 printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);

Frame Grabber SDK (Windows-C) Developer Guide

73

 break;
 }

 // Enable stream channel (currently only one stream channel is supported at a time).
 nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open stream failed! %#x\n", nRet);
 break;
 }

 // Register the exception information callback function of the stream channel.
 //nRet = MV_FG_RegisterExceptionCallBack(hStream, ExceptionCb, hStream);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register stream exception callback failed!\n");
 // break;
 //}

 // Set the number of internal buffers for the SDK.
 nRet = MV_FG_SetBufferNum(hStream, BUFFER_NUMBER);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set buffer number failed! %#x\n", nRet);
 break;
 }

 Callback_User stUerParam;
 memset(&stUerParam, 0, sizeof(Callback_User));
 stUerParam.hDevice = hDevice;

 // Register the frame buffer information callback function.
 nRet = MV_FG_RegisterFrameCallBack(hStream, FrameCb, &stUerParam);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Register frame callback failed! %#x\n", nRet);
 break;
 }

 // Start image acquisition.
 nRet = MV_FG_StartAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Start acquistion failed! %#x\n", nRet);
 return nRet;
 }

 printf("Press any key to stop acquisition.\n");
 WaitForKeyPress();

 // Stop image acquisition.

Frame Grabber SDK (Windows-C) Developer Guide

74

 nRet = MV_FG_StopAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Stop acquisition failed! %#x\n", nRet);
 if (stUerParam.stSaveJpegInfo.pJpgBuf)
 {
 free(stUerParam.stSaveJpegInfo.pJpgBuf);
 stUerParam.stSaveJpegInfo.pJpgBuf = NULL;
 }
 return nRet;
 }
 if (stUerParam.stSaveJpegInfo.pJpgBuf)
 {
 free(stUerParam.stSaveJpegInfo.pJpgBuf);
 stUerParam.stSaveJpegInfo.pJpgBuf = NULL;
 }
 } while (0);

 // Disable stream channel.
 if (NULL != hStream)
 {
 nRet = MV_FG_CloseStream(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close stream failed! %#x\n", nRet);
 }
 hStream = NULL;
 }

 // Close the device.
 if (NULL != hDevice)
 {
 nRet = MV_FG_CloseDevice(hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close device failed! %#x\n", nRet);
 }
 hDevice = NULL;
 }

 // Close the frame grabber.
 if (NULL != hInterface)
 {
 nRet = MV_FG_CloseInterface(hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close interface failed! %#x\n", nRet);
 }
 hInterface = NULL;
 }

Frame Grabber SDK (Windows-C) Developer Guide

75

 printf("Press any key to exit.\n");
 WaitForKeyPress();

 return 0;
}

A.2 Acquire Images with Internal Buffers

The following sample codes show how to acquire images with internal buffers of the SDK.
#include <stdio.h>
#include <Windows.h>
#include <process.h>
#include <conio.h>
#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define FILE_NAME_LEN 256 // The maximum length of file name
#define SAVE_IMAGE_NUM 10 // The maximum number of saved images
#define TIMEOUT 1000 // Timeout; unit: millisecond (ms)
bool g_bExit = false; // Stop acquisition

// Wait for key press.
void WaitForKeyPress(void)
{
 while(!_kbhit())
 {
 Sleep(10);
 }
 _getch();
}

// Clear residual data from stdin
void ClearStdin(void)
{
 char c = '\0';

 while (1)
 {
 c = getchar();
 if ('\n' == c || EOF == c)
 {
 break;
 }
 }
}

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)
{
 switch(enExceptionType)

Frame Grabber SDK (Windows-C) Developer Guide

76

 {
 case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
 {
 printf("Exception: Interface Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_DEVICE_DISCONNECT:
 {
 printf("Exception: Device Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
 {
 printf("Exception: Abnormal Image!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
 {
 printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_DISCONNECTED:
 {
 printf("Exception: Stream Disconnected!\n");
 break;
 }
 default:
 {
 printf("Unknown Exception!\n");
 break;
 }
 }
}

// Save the original BMP image data.
void SaveBitImage(unsigned char* pBitMapBuf, unsigned int nBufferSize)
{
 if (NULL != pBitMapBuf && 0 < nBufferSize)
 {
 char szFileName[FILE_NAME_LEN] = { 0 };
 FILE* pImageFile = NULL;
 SYSTEMTIME sys;
 GetLocalTime(&sys);

 sprintf_s(szFileName, FILE_NAME_LEN, "Image_%04d%02d%02d%02d%02d%02d%04d.bmp",
sys.wYear, sys.wMonth,
 sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);

 if ((0 != fopen_s(&pImageFile, szFileName, "wb")) || (NULL == pImageFile))

Frame Grabber SDK (Windows-C) Developer Guide

77

 {
 return;
 }

 fwrite(pBitMapBuf, 1, nBufferSize, pImageFile);
 fclose(pImageFile);
 }
}

// Image acquisition thread.
unsigned int __stdcall GrabbingThread(void* pUser)
{
 if (pUser)
 {
 STREAMHANDLE hStream = (STREAMHANDLE)pUser;
 MV_FG_BUFFER_INFO stFrameInfo = { 0 }; // Image information
 int nRet = 0;
 MV_FG_SAVE_BITMAP_INFO stSaveBitmapInfo = {0}; // BMP image saving information
 memset(&stSaveBitmapInfo, 0, sizeof(MV_FG_SAVE_BITMAP_INFO));

 // Start image acquisition.
 nRet = MV_FG_StartAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Start acquistion failed! %#x\n", nRet);
 return nRet;
 }
 g_bExit = false;

 while (!g_bExit)
 {
 // Get the buffer information of a frame.
 nRet = MV_FG_GetFrameBuffer(hStream, &stFrameInfo, TIMEOUT);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get frame buffer info failed! %#x\n", nRet);
 continue;
 }
 else
 {
 printf("FrameNumber:%2I64d%, Width:%d, Height:%d\n", stFrameInfo.nFrameID,
stFrameInfo.nWidth, stFrameInfo.nHeight);
 if ((stFrameInfo.pBuffer) && (0 < stFrameInfo.nFilledSize))
 {
 stSaveBitmapInfo.stInputImageInfo.pImageBuf = (unsigned
char*)stFrameInfo.pBuffer;
 stSaveBitmapInfo.stInputImageInfo.nImageBufLen = stFrameInfo.nFilledSize;
 stSaveBitmapInfo.stInputImageInfo.nHeight = stFrameInfo.nHeight;
 stSaveBitmapInfo.stInputImageInfo.nWidth = stFrameInfo.nWidth;
 stSaveBitmapInfo.stInputImageInfo.enPixelType = stFrameInfo.enPixelType;
 unsigned int nSize = stFrameInfo.nHeight * stFrameInfo.nWidth * 4;

Frame Grabber SDK (Windows-C) Developer Guide

78

 if (stSaveBitmapInfo.nBmpBufSize < nSize)
 {
 if (stSaveBitmapInfo.pBmpBuf)
 {
 free (stSaveBitmapInfo.pBmpBuf);
 stSaveBitmapInfo.pBmpBuf = NULL;
 }
 stSaveBitmapInfo.pBmpBuf = (unsigned char*)malloc(nSize);
 if (NULL == stSaveBitmapInfo.pBmpBuf)
 {
 printf("malloc pConvertData fail!\n");
 nRet = MV_FG_ERR_RESOURCE_EXHAUSTED;
 break;
 }
 stSaveBitmapInfo.nBmpBufSize = nSize;
 }

 stSaveBitmapInfo.nBmpBufLen = 0;
 stSaveBitmapInfo.enCfaMethod = MV_FG_CFA_METHOD_OPTIMAL;
 nRet = MV_FG_SaveBitmap(hStream, &stSaveBitmapInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("MV_FG_SaveBitmap info failed! %#x\n", nRet);
 }
 else
 {
 SaveBitImage(stSaveBitmapInfo.pBmpBuf,
stSaveBitmapInfo.nBmpBufLen);
 }
 }
 }

 // Insert the buffer back to the input queue.
 nRet = MV_FG_ReleaseFrameBuffer(hStream, &stFrameInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Release frame buffer failed! %#x\n", nRet);
 break;
 }
 }

 if (stSaveBitmapInfo.pBmpBuf)
 {
 free(stSaveBitmapInfo.pBmpBuf);
 stSaveBitmapInfo.pBmpBuf = NULL;
 }

 // Stop image acquisition.
 nRet = MV_FG_StopAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {

Frame Grabber SDK (Windows-C) Developer Guide

79

 printf("Stop acquisition failed! %#x\n", nRet);
 return nRet;
 }

 }

 return MV_FG_SUCCESS;
}

// Print frame grabber information.
bool PrintInterfaceInfo(unsigned int nInterfaceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nInterfaceNum; i++)
 {
 MV_FG_INTERFACE_INFO stInterfaceInfo = { 0 };

 nRet = MV_FG_GetInterfaceInfo(i, &stInterfaceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d interface failed! %#x\n", i, nRet);
 return false;
 }

 switch (stInterfaceInfo.nTLayerType)
 {
 case MV_FG_CXP_INTERFACE:
 {
 printf("[CXP]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_INTERFACE:
 {
 printf("[GEV]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_INTERFACE:
 {
 printf("[CML]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chInterfaceID,

Frame Grabber SDK (Windows-C) Developer Guide

80

 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown interface type.\n");
 return false;
 }
 }
 }

 return true;
}

// Print device information.
bool PrintDeviceInfo(IFHANDLE hInterface, unsigned int nDeviceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nDeviceNum; i++)
 {
 MV_FG_DEVICE_INFO stDeviceInfo = { 0 };

 nRet = MV_FG_GetDeviceInfo(hInterface, i, &stDeviceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d device failed! %#x\n", i, nRet);
 return false;
 }

 switch (stDeviceInfo.nDevType)
 {
 case MV_FG_CXP_DEVICE:
 {
 printf("[CXP]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCXPDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_DEVICE:
 {
 printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stGEVDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chModelName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_DEVICE:

Frame Grabber SDK (Windows-C) Developer Guide

81

 {
 printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCMLDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown device type.\n");
 return false;
 }
 }
 }

 return true;
}

int main()
{
 int nRet = 0;
 IFHANDLE hInterface = NULL;
 DEVHANDLE hDevice = NULL;
 STREAMHANDLE hStream = NULL;

 do
 {
 // Enumerate frame grabbers.
 bool bChanged = false;
 nRet = MV_FG_UpdateInterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update interface list failed! %#x\n", nRet);
 break;
 }

 // Get the number of frame grabbers.
 unsigned int nInterfaceNum = 0;
 nRet = MV_FG_GetNumInterfaces(&nInterfaceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)
 {
 printf("No interface found! return = %d, number = %d\n", nRet, nInterfaceNum);
 break;
 }

 // Display frame grabber information.
 if (false == PrintInterfaceInfo(nInterfaceNum))
 {
 break;

Frame Grabber SDK (Windows-C) Developer Guide

82

 }

 // Select frame grabber.
 int nInterfaceIndex = -1;
 printf("Select an interface: ");
 scanf_s("%d", &nInterfaceIndex);
 ClearStdin();

 if (nInterfaceIndex < 0 || nInterfaceIndex >= (int)nInterfaceNum)
 {
 printf("Invalid interface index.\nQuit.\n");
 break;
 }

 // Open the frame grabber and get the frame grabber handle.
 nRet = MV_FG_OpenInterface((unsigned int)nInterfaceIndex, &hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d interface failed! %#x\n", nInterfaceIndex, nRet);
 break;
 }

 // Register the exception information callback function of the frame grabber.
 //nRet = MV_FG_RegisterExceptionCallBack(hInterface, ExceptionCb, hInterface);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register interface exception callback failed!\n");
 // break;
 //}

 // Enumerate cameras of the frame grabber.
 nRet = MV_FG_UpdateDeviceList(hInterface, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update device list failed! %#x\n", nRet);
 break;
 }

 // Get the number of devices.
 unsigned int nDeviceNum = 0;
 nRet = MV_FG_GetNumDevices(hInterface, &nDeviceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)
 {
 printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
 break;
 }

 // Display device information.
 if (false == PrintDeviceInfo(hInterface, nDeviceNum))
 {
 break;

Frame Grabber SDK (Windows-C) Developer Guide

83

 }

 // Select device.
 int nDeviceIndex = -1;
 printf("Select a device: ");
 scanf_s("%d", &nDeviceIndex);
 ClearStdin();

 if (nDeviceIndex < 0 || nDeviceIndex >= (int)nDeviceNum)
 {
 printf("Invalid device index.\nQuit.\n");
 break;
 }

 // Open the device and get the device handle.
 nRet = MV_FG_OpenDevice(hInterface, (unsigned int)nDeviceIndex, &hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d device failed! %#x\n", nDeviceIndex, nRet);
 hDevice = NULL;
 break;
 }

 // Register the exception information callback function of the device.
 //nRet = MV_FG_RegisterExceptionCallBack(hDevice, ExceptionCb, hDevice);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register device exception callback failed!\n");
 // break;
 //}

 // Disable the trigger mode.
 nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Turn off trigger mode failed! %#x\n", nRet);
 break;
 }

 // Get the number of stream channels.
 unsigned int nStreamNum = 0;
 nRet = MV_FG_GetNumStreams(hDevice, &nStreamNum);
 if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)
 {
 printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
 break;
 }

 // Open stream channel (currently only one stream channel is supported at a time).
 nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
 if (MV_FG_SUCCESS != nRet)

Frame Grabber SDK (Windows-C) Developer Guide

84

 {
 printf("Open stream failed! %#x\n", nRet);
 break;
 }

 // Register the exception information callback function of the stream channel.
 //nRet = MV_FG_RegisterExceptionCallBack(hStream, ExceptionCb, hStream);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register stream exception callback failed!\n");
 // break;
 //}

 // Set the number of internal buffers for the SDK.
 nRet = MV_FG_SetBufferNum(hStream, BUFFER_NUMBER);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set buffer number failed! %#x\n", nRet);
 break;
 }

 // Create thread for image acquisition.
 void* hThreadHandle = (void*)_beginthreadex(NULL, 0, GrabbingThread, hStream, 0, NULL);
 if (NULL == hThreadHandle)
 {
 printf("Create thread failed!\n");
 break;
 }

 printf("Press any key to stop acquisition.\n");
 WaitForKeyPress();

 // Stop image acquisition thread.
 g_bExit = true;
 WaitForSingleObject(hThreadHandle, INFINITE);
 CloseHandle(hThreadHandle);
 hThreadHandle = NULL;
 } while (0);

 // Close stream channel.
 if (NULL != hStream)
 {
 nRet = MV_FG_CloseStream(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close stream failed! %#x\n", nRet);
 }
 hStream = NULL;
 }

 // Close the device.

Frame Grabber SDK (Windows-C) Developer Guide

85

 if (NULL != hDevice)
 {
 nRet = MV_FG_CloseDevice(hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close device failed! %#x\n", nRet);
 }
 hDevice = NULL;
 }

 // Close the frame grabber.
 if (NULL != hInterface)
 {
 nRet = MV_FG_CloseInterface(hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close interface failed! %#x\n", nRet);
 }
 hInterface = NULL;
 }

 printf("Press any key to exit.\n");
 WaitForKeyPress();

 return 0;
}

A.3 Acquire Images with User Registering Buffers

The following sample codes show how to acquire images using buffers registered to stream channels
by the user.
#include <stdio.h>
#include <Windows.h>
#include <process.h>
#include <conio.h>
#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define FILE_NAME_LEN 256 // The maximum length of file name
#define SAVE_IMAGE_NUM 10 // The maximum number of saved images
#define TIMEOUT 1000 // Timeout; unit: millisecond (ms)

bool g_bExit = false; // Stop acquisition

// Wait for key press.
void WaitForKeyPress(void)
{
 while(!_kbhit())
 {
 Sleep(10);

Frame Grabber SDK (Windows-C) Developer Guide

86

 }
 _getch();
}

// Clear residual data from stdin.
void ClearStdin(void)
{
 char c = '\0';

 while (1)
 {
 c = getchar();
 if ('\n' == c || EOF == c)
 {
 break;
 }
 }
}

// Save the original image data.
void SaveRawImage(int nImageNo, MV_FG_BUFFER_INFO* pstImageInfo)
{
 if (pstImageInfo)
 {
 char szFileName[FILE_NAME_LEN] = { 0 };

 sprintf_s(szFileName, FILE_NAME_LEN, "Image_w%d_h%d_n%d.raw", pstImageInfo->nWidth,
pstImageInfo->nHeight, nImageNo);

 FILE* pImageFile = NULL;
 if ((0 != fopen_s(&pImageFile, szFileName, "wb")) || (NULL == pImageFile))
 {
 return;
 }

 fwrite(pstImageInfo->pBuffer, 1, pstImageInfo->nFilledSize, pImageFile);
 fclose(pImageFile);
 }
}

// Image acquisition thread.
unsigned int __stdcall GrabbingThread(void* pUser)
{
 if (pUser)
 {
 STREAMHANDLE hStream = (STREAMHANDLE)pUser;
 BUFFERHANDLE hBuffer = NULL;
 MV_FG_BUFFER_INFO stFrameInfo = { 0 }; // Image information
 int nSaveImage = 0; // Number of saved images
 int nRet = 0;

Frame Grabber SDK (Windows-C) Developer Guide

87

 // Start image acquisition.
 nRet = MV_FG_StartAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Start acquistion failed! %#x\n", nRet);
 return nRet;
 }
 g_bExit = false;

 while (!g_bExit)
 {
 // Get the buffer handle of a frame.
 nRet = MV_FG_GetImageBuffer(hStream, &hBuffer, TIMEOUT);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get image buffer failed! %#x\n", nRet);
 continue;
 }

 // Get image information.
 nRet = MV_FG_GetBufferInfo(hBuffer, &stFrameInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get image info failed! %#x\n", nRet);
 }
 else
 {
 printf("FrameNumber:%2I64d%, Width:%d, Height:%d\n", stFrameInfo.nFrameID,
stFrameInfo.nWidth, stFrameInfo.nHeight);

 if (nSaveImage < SAVE_IMAGE_NUM)
 {
 SaveRawImage(++nSaveImage, &stFrameInfo);
 }
 }

 // Insert the buffer back to the input queue.
 nRet = MV_FG_QueueBuffer(hBuffer);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Queue buffer failed! %#x\n", nRet);
 break;
 }
 }

 // Stop image acquisition.
 nRet = MV_FG_StopAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Stop acquisition failed! %#x\n", nRet);
 return nRet;

Frame Grabber SDK (Windows-C) Developer Guide

88

 }
 }

 return MV_FG_SUCCESS;
}

// Print frame grabber information.
bool PrintInterfaceInfo(unsigned int nInterfaceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nInterfaceNum; i++)
 {
 MV_FG_INTERFACE_INFO stInterfaceInfo = { 0 };

 nRet = MV_FG_GetInterfaceInfo(i, &stInterfaceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d interface failed! %#x\n", i, nRet);
 return false;
 }

 switch (stInterfaceInfo.nTLayerType)
 {
 case MV_FG_CXP_INTERFACE:
 {
 printf("[CXP]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_INTERFACE:
 {
 printf("[GEV]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_INTERFACE:
 {
 printf("[CML]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chSerialNumber);
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

89

 default:
 {
 printf("Unknown interface type.\n");
 return false;
 }
 }
 }

 return true;
}

// Print device information.
bool PrintDeviceInfo(IFHANDLE hInterface, unsigned int nDeviceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nDeviceNum; i++)
 {
 MV_FG_DEVICE_INFO stDeviceInfo = { 0 };

 nRet = MV_FG_GetDeviceInfo(hInterface, i, &stDeviceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d device failed! %#x\n", i, nRet);
 return false;
 }

 switch (stDeviceInfo.nDevType)
 {
 case MV_FG_CXP_DEVICE:
 {
 printf("[CXP]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCXPDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_DEVICE:
 {
 printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stGEVDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chModelName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_DEVICE:
 {
 printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,

Frame Grabber SDK (Windows-C) Developer Guide

90

 stDeviceInfo.DevInfo.stCMLDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown device type.\n");
 return false;
 }
 }
 }

 return true;
}

int main()
{
 int nRet = 0;
 IFHANDLE hInterface = NULL;
 DEVHANDLE hDevice = NULL;
 STREAMHANDLE hStream = NULL;
 BUFFERHANDLE hBuffer[BUFFER_NUMBER] = { 0 };
 void* pBuffer[BUFFER_NUMBER] = { 0 };

 do
 {
 // Enumerate frame grabbers.
 bool bChanged = false;
 nRet = MV_FG_UpdateInterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update interface list failed! %#x\n", nRet);
 break;
 }

 // Get the number of frame grabbers.
 unsigned int nInterfaceNum = 0;
 nRet = MV_FG_GetNumInterfaces(&nInterfaceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)
 {
 printf("No interface found! return = %d, number = %d\n", nRet, nInterfaceNum);
 break;
 }

 // Display frame grabber information.
 if (false == PrintInterfaceInfo(nInterfaceNum))
 {
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

91

 // Select frame grabber.
 int nInterfaceIndex = -1;
 printf("Select an interface: ");
 scanf_s("%d", &nInterfaceIndex);
 ClearStdin();

 if (nInterfaceIndex < 0 || nInterfaceIndex >= (int)nInterfaceNum)
 {
 printf("Invalid interface index.\nQuit.\n");
 break;
 }

 // Open the frame grabber and get the frame grabber handle.
 nRet = MV_FG_OpenInterface((unsigned int)nInterfaceIndex, &hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d interface failed! %#x\n", nInterfaceIndex, nRet);
 break;
 }

 // Enumerate cameras of the frame grabber.
 nRet = MV_FG_UpdateDeviceList(hInterface, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update device list failed! %#x\n", nRet);
 break;
 }

 // Get the number of devices.
 unsigned int nDeviceNum = 0;
 nRet = MV_FG_GetNumDevices(hInterface, &nDeviceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)
 {
 printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
 break;
 }

 // Display device information.
 if (false == PrintDeviceInfo(hInterface, nDeviceNum))
 {
 break;
 }

 // Select the device.
 int nDeviceIndex = -1;
 printf("Select a device: ");
 scanf_s("%d", &nDeviceIndex);
 ClearStdin();

 if (nDeviceIndex < 0 || nDeviceIndex >= (int)nDeviceNum)

Frame Grabber SDK (Windows-C) Developer Guide

92

 {
 printf("Invalid device index.\nQuit.\n");
 break;
 }

 // Open the device and get the device handle.
 nRet = MV_FG_OpenDevice(hInterface, (unsigned int)nDeviceIndex, &hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d device failed! %#x\n", nDeviceIndex, nRet);
 hDevice = NULL;
 break;
 }

 // Disable trigger mode.
 nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Turn off trigger mode failed! %#x\n", nRet);
 break;
 }

 // Get the number of stream channels.
 unsigned int nStreamNum = 0;
 nRet = MV_FG_GetNumStreams(hDevice, &nStreamNum);
 if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)
 {
 printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
 break;
 }

 // O stream channel (currently only one stream channel is supported at a time).
 nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open stream failed! %#x\n", nRet);
 break;
 }

 // Get the image size of the stream channel.
 unsigned int nPayloadSize = 0;
 nRet = MV_FG_GetPayloadSize(hStream, &nPayloadSize);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get payload size failed! %#x\n", nRet);
 break;
 }

 // Register buffer to stream channel.
 for (unsigned int i = 0; i < BUFFER_NUMBER; i++)
 {

Frame Grabber SDK (Windows-C) Developer Guide

93

 // Allocate image buffers.
 pBuffer[i] = malloc(nPayloadSize);
 if (NULL == pBuffer[i])
 {
 printf("Allocate buffer failed!\n");
 nRet = MV_FG_ERR_OUT_OF_MEMORY;
 break;
 }

 // Register buffer to SDK.
 nRet = MV_FG_AnnounceBuffer(hStream, pBuffer[i], nPayloadSize, NULL, &(hBuffer[i]));
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Announce buffer failed! %#x\n", nRet);
 break;
 }
 }
 if (MV_FG_SUCCESS != nRet)
 {
 break;
 }

 // Refresh the buffer queue for image acquisition.
 nRet = MV_FG_FlushQueue(hStream, MV_FG_BUFFER_QUEUE_ALL_TO_INPUT);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Flush queue: all to input failed! %#x\n", nRet);
 break;
 }

 // Create thread for image acquisition.
 void* hThreadHandle = (void*)_beginthreadex(NULL, 0, GrabbingThread, hStream, 0, NULL);
 if (NULL == hThreadHandle)
 {
 printf("Create thread failed!\n");
 break;
 }

 printf("Press any key to stop acquisition.\n");
 WaitForKeyPress();

 // Stop image acquisition thread.
 g_bExit = true;
 WaitForSingleObject(hThreadHandle, INFINITE);
 CloseHandle(hThreadHandle);
 hThreadHandle = NULL;
 } while (0);

 // Release resources.
 if (NULL != hStream)
 {

Frame Grabber SDK (Windows-C) Developer Guide

94

 // Clear buffer queues.
 nRet = MV_FG_FlushQueue(hStream, MV_FG_BUFFER_QUEUE_ALL_DISCARD);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Flush buffer queue failed! %#x\n", nRet);
 }

 // Revoke and release registered buffers.
 for (unsigned int i = 0; i < BUFFER_NUMBER; i++)
 {
 if (NULL != hBuffer[i])
 {
 nRet = MV_FG_RevokeBuffer(hStream, hBuffer[i], NULL, NULL);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Revoke No.%d buffer failed! %#x\n", i, nRet);
 }
 hBuffer[i] = NULL;
 }

 if (NULL != pBuffer[i])
 {
 free(pBuffer[i]);
 pBuffer[i] = NULL;
 }
 }

 // Close the stream channel.
 nRet = MV_FG_CloseStream(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close stream failed! %#x\n", nRet);
 }
 hStream = NULL;
 }

 // Close the device.
 if (NULL != hDevice)
 {
 nRet = MV_FG_CloseDevice(hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close device failed! %#x\n", nRet);
 }
 hDevice = NULL;
 }

 // Close the frame grabber.
 if (NULL != hInterface)
 {
 nRet = MV_FG_CloseInterface(hInterface);

Frame Grabber SDK (Windows-C) Developer Guide

95

 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close interface failed! %#x\n", nRet);
 }
 hInterface = NULL;
 }

 printf("Press any key to exit.\n");
 WaitForKeyPress();

 return 0;
}

A.4 Convert Pixel Format

The following sample codes show how to convert the format of acquired images to a desired format.
#include <stdio.h>
#include <Windows.h>
#include <process.h>
#include <conio.h>
#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define FILE_NAME_LEN 256 // The maximum length of file name
#define SAVE_IMAGE_NUM 10 // The maximum number of saved images
#define TIMEOUT 1000 // Timeout; unit: millisecond (ms)
bool g_bExit = false; // Stop acquisition

// Wait for key press.
void WaitForKeyPress(void)
{
 while(!_kbhit())
 {
 Sleep(10);
 }
 _getch();
}

// Clear residual data from stdin.
void ClearStdin(void)
{
 char c = '\0';

 while (1)
 {
 c = getchar();
 if ('\n' == c || EOF == c)
 {
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

96

 }
}

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)
{
 switch(enExceptionType)
 {
 case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
 {
 printf("Exception: Interface Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_DEVICE_DISCONNECT:
 {
 printf("Exception: Device Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
 {
 printf("Exception: Abnormal Image!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
 {
 printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_DISCONNECTED:
 {
 printf("Exception: Stream Disconnected!\n");
 break;
 }
 default:
 {
 printf("Unknown Exception!\n");
 break;
 }
 }
}

// Save the original BMP image data.
void SaveBitImage(unsigned char* pBitMapBuf, unsigned int nBufferSize)
{
 if (NULL != pBitMapBuf && 0 < nBufferSize)
 {
 char szFileName[FILE_NAME_LEN] = { 0 };
 FILE* pImageFile = NULL;
 SYSTEMTIME sys;
 GetLocalTime(&sys);

Frame Grabber SDK (Windows-C) Developer Guide

97

 sprintf_s(szFileName, FILE_NAME_LEN, "Image_%04d%02d%02d%02d%02d%02d%04d.bmp",
sys.wYear, sys.wMonth,
 sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);

 if ((0 != fopen_s(&pImageFile, szFileName, "wb")) || (NULL == pImageFile))
 {
 return;
 }

 fwrite(pBitMapBuf, 1, nBufferSize, pImageFile);
 fclose(pImageFile);
 }
}

bool IsColorPixelFormat(MV_FG_PIXEL_TYPE enPixelType)
{
 switch(enPixelType)
 {
 case MV_FG_PIXEL_TYPE_RGBA8_Packed:
 case MV_FG_PIXEL_TYPE_BGRA8_Packed:
 case MV_FG_PIXEL_TYPE_BayerGR8:
 case MV_FG_PIXEL_TYPE_BayerRG8:
 case MV_FG_PIXEL_TYPE_BayerGB8:
 case MV_FG_PIXEL_TYPE_BayerBG8:
 case MV_FG_PIXEL_TYPE_BayerGB10:
 case MV_FG_PIXEL_TYPE_BayerGB10_Packed:
 case MV_FG_PIXEL_TYPE_BayerBG10:
 case MV_FG_PIXEL_TYPE_BayerBG10_Packed:
 case MV_FG_PIXEL_TYPE_BayerRG10:
 case MV_FG_PIXEL_TYPE_BayerRG10_Packed:
 case MV_FG_PIXEL_TYPE_BayerGR10:
 case MV_FG_PIXEL_TYPE_BayerGR10_Packed:
 case MV_FG_PIXEL_TYPE_BayerGB12:
 case MV_FG_PIXEL_TYPE_BayerGB12_Packed:
 case MV_FG_PIXEL_TYPE_BayerBG12:
 case MV_FG_PIXEL_TYPE_BayerBG12_Packed:
 case MV_FG_PIXEL_TYPE_BayerRG12:
 case MV_FG_PIXEL_TYPE_BayerRG12_Packed:
 case MV_FG_PIXEL_TYPE_BayerGR12:
 case MV_FG_PIXEL_TYPE_BayerGR12_Packed:
 case MV_FG_PIXEL_TYPE_BayerGR16:
 case MV_FG_PIXEL_TYPE_BayerRG16:
 case MV_FG_PIXEL_TYPE_BayerGB16:
 case MV_FG_PIXEL_TYPE_BayerBG16:
 case MV_FG_PIXEL_TYPE_YUV422_Packed:
 case MV_FG_PIXEL_TYPE_YUV422_YUYV_Packed:
 return true;
 default:
 return false;
 }
}

Frame Grabber SDK (Windows-C) Developer Guide

98

// Determine whether the image is in monochrome format.
bool IsMonoPixelFormat(MV_FG_PIXEL_TYPE enPixelType)
{
 switch(enPixelType)
 {
 case MV_FG_PIXEL_TYPE_Mono10:
 case MV_FG_PIXEL_TYPE_Mono10_Packed:
 case MV_FG_PIXEL_TYPE_Mono12:
 case MV_FG_PIXEL_TYPE_Mono12_Packed:
 case MV_FG_PIXEL_TYPE_Mono16:
 return true;
 default:
 return false;
 }
}

// Image acquisition thread.
unsigned int __stdcall GrabbingThread(void* pUser)
{
 if (pUser)
 {
 STREAMHANDLE hStream = (STREAMHANDLE)pUser;
 MV_FG_BUFFER_INFO stFrameInfo = { 0 }; // Image information
 int nRet = 0;
 MV_FG_CONVERT_PIXEL_INFO stConvertPixelInfo = {0}; // Image conversion information
 memset(&stConvertPixelInfo, 0, sizeof(MV_FG_CONVERT_PIXEL_INFO));

 // Start image acquisition.
 nRet = MV_FG_StartAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Start acquistion failed! %#x\n", nRet);
 return nRet;
 }
 g_bExit = false;

 while (!g_bExit)
 {
 // Get the buffer information of a frame.
 nRet = MV_FG_GetFrameBuffer(hStream, &stFrameInfo, TIMEOUT);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get frame buffer info failed! %#x\n", nRet);
 continue;
 }
 else
 {
 printf("FrameNumber:%2I64d%, Width:%d, Height:%d\n", stFrameInfo.nFrameID,
stFrameInfo.nWidth, stFrameInfo.nHeight);
 if ((stFrameInfo.pBuffer) && (0 < stFrameInfo.nFilledSize))

Frame Grabber SDK (Windows-C) Developer Guide

99

 {
 MV_FG_PIXEL_TYPE enDstPixelType = MV_FG_PIXEL_TYPE_Undefined;
 unsigned int nChannelNum = 0;
 char szFileName[FILE_NAME_LEN] = { 0 };
 FILE* pImageFile = NULL;
 SYSTEMTIME sys;
 GetLocalTime(&sys);

 // If in color format, convert to RGB8.
 if (IsColorPixelFormat(stFrameInfo.enPixelType))
 {
 nChannelNum = 3;
 enDstPixelType = MV_FG_PIXEL_TYPE_RGB8_Packed;
 sprintf_s(szFileName, FILE_NAME_LEN,
"After_%04d%02d%02d%02d%02d%02d%03d.rgb", sys.wYear, sys.wMonth,
 sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);
 }
 //If in monochrome format, convert to Mono8.
 else if (IsMonoPixelFormat(stFrameInfo.enPixelType))
 {
 nChannelNum = 1;
 enDstPixelType = MV_FG_PIXEL_TYPE_Mono8;
 sprintf_s(szFileName, FILE_NAME_LEN,
"After_%04d%02d%02d%02d%02d%02d%03d.gray", sys.wYear, sys.wMonth,
 sys.wDay, sys.wHour, sys.wMinute, sys.wSecond, sys.wMilliseconds);
 }
 else
 {
 printf("Don't need to convert!\n");
 }

 if (enDstPixelType != MV_FG_PIXEL_TYPE_Undefined)
 {

 stConvertPixelInfo.stInputImageInfo.pImageBuf = (unsigned
char*)stFrameInfo.pBuffer;
 stConvertPixelInfo.stInputImageInfo.nImageBufLen =
stFrameInfo.nFilledSize;
 stConvertPixelInfo.stInputImageInfo.nHeight = stFrameInfo.nHeight;
 stConvertPixelInfo.stInputImageInfo.nWidth = stFrameInfo.nWidth;
 stConvertPixelInfo.stInputImageInfo.enPixelType =
stFrameInfo.enPixelType;

 unsigned int nSize = stFrameInfo.nHeight * stFrameInfo.nWidth *
nChannelNum;
 if (nSize > stConvertPixelInfo.stOutputImageInfo.nImageBufSize)
 {
 if (stConvertPixelInfo.stOutputImageInfo.pImageBuf)
 {
 free(stConvertPixelInfo.stOutputImageInfo.pImageBuf);
 stConvertPixelInfo.stOutputImageInfo.pImageBuf = NULL;

Frame Grabber SDK (Windows-C) Developer Guide

100

 }
 stConvertPixelInfo.stOutputImageInfo.pImageBuf = (unsigned
char*)malloc(nSize);
 if (NULL == stConvertPixelInfo.stOutputImageInfo.pImageBuf)
 {
 printf("malloc pConvertData fail!\n");
 nRet = MV_FG_ERR_RESOURCE_EXHAUSTED;
 break;
 }
 stConvertPixelInfo.stOutputImageInfo.nImageBufSize = nSize;
 }

 stConvertPixelInfo.stOutputImageInfo.nImageBufLen = 0;
 stConvertPixelInfo.stOutputImageInfo.enPixelType = enDstPixelType;
 stConvertPixelInfo.enCfaMethod = MV_FG_CFA_METHOD_OPTIMAL;

 nRet = MV_FG_ConvertPixelType(hStream, &stConvertPixelInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Convert Pixel Type fail! nRet [0x%x]\n", nRet);
 continue;
 }

 if ((0 != fopen_s(&pImageFile, szFileName, "wb")) || (NULL == pImageFile))
 {
 continue;
 }

 fwrite(stConvertPixelInfo.stOutputImageInfo.pImageBuf, 1,
stConvertPixelInfo.stOutputImageInfo.nImageBufLen, pImageFile);
 fclose(pImageFile);
 printf("Convert pixeltype succeed\n");
 }
 }
 }

 // Insert the buffer back to the input queue.
 nRet = MV_FG_ReleaseFrameBuffer(hStream, &stFrameInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Release frame buffer failed! %#x\n", nRet);
 break;
 }
 }

 if (stConvertPixelInfo.stOutputImageInfo.pImageBuf)
 {
 free(stConvertPixelInfo.stOutputImageInfo.pImageBuf);
 stConvertPixelInfo.stOutputImageInfo.pImageBuf = NULL;
 }

Frame Grabber SDK (Windows-C) Developer Guide

101

 // Stop image acquisition.
 nRet = MV_FG_StopAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Stop acquisition failed! %#x\n", nRet);
 return nRet;
 }

 }

 return MV_FG_SUCCESS;
}

// Print frame grabber information.
bool PrintInterfaceInfo(unsigned int nInterfaceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nInterfaceNum; i++)
 {
 MV_FG_INTERFACE_INFO stInterfaceInfo = { 0 };

 nRet = MV_FG_GetInterfaceInfo(i, &stInterfaceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d interface failed! %#x\n", i, nRet);
 return false;
 }

 switch (stInterfaceInfo.nTLayerType)
 {
 case MV_FG_CXP_INTERFACE:
 {
 printf("[CXP]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_INTERFACE:
 {
 printf("[GEV]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_INTERFACE:
 {

Frame Grabber SDK (Windows-C) Developer Guide

102

 printf("[CML]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown interface type.\n");
 return false;
 }
 }
 }

 return true;
}

// Print device information.
bool PrintDeviceInfo(IFHANDLE hInterface, unsigned int nDeviceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nDeviceNum; i++)
 {
 MV_FG_DEVICE_INFO stDeviceInfo = { 0 };

 nRet = MV_FG_GetDeviceInfo(hInterface, i, &stDeviceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d device failed! %#x\n", i, nRet);
 return false;
 }

 switch (stDeviceInfo.nDevType)
 {
 case MV_FG_CXP_DEVICE:
 {
 printf("[CXP]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCXPDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_DEVICE:
 {
 printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stGEVDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chModelName,

Frame Grabber SDK (Windows-C) Developer Guide

103

 stDeviceInfo.DevInfo.stGEVDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_DEVICE:
 {
 printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCMLDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown device type.\n");
 return false;
 }
 }
 }

 return true;
}

int main()
{
 int nRet = 0;
 IFHANDLE hInterface = NULL;
 DEVHANDLE hDevice = NULL;
 STREAMHANDLE hStream = NULL;

 do
 {
 // Enumerate frame grabbers.
 bool bChanged = false;
 nRet = MV_FG_UpdateInterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update interface list failed! %#x\n", nRet);
 break;
 }

 // Get the number of frame grabbers.
 unsigned int nInterfaceNum = 0;
 nRet = MV_FG_GetNumInterfaces(&nInterfaceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)
 {
 printf("No interface found! return = %d, number = %d\n", nRet, nInterfaceNum);
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

104

 // Display frame grabber information.
 if (false == PrintInterfaceInfo(nInterfaceNum))
 {
 break;
 }

 // Select frame grabber.
 int nInterfaceIndex = -1;
 printf("Select an interface: ");
 scanf_s("%d", &nInterfaceIndex);
 ClearStdin();

 if (nInterfaceIndex < 0 || nInterfaceIndex >= (int)nInterfaceNum)
 {
 printf("Invalid interface index.\nQuit.\n");
 break;
 }

 // Open the frame grabber and get the frame grabber handle.
 nRet = MV_FG_OpenInterface((unsigned int)nInterfaceIndex, &hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d interface failed! %#x\n", nInterfaceIndex, nRet);
 break;
 }

 // Register the exception information callback function of the frame grabber.
 //nRet = MV_FG_RegisterExceptionCallBack(hInterface, ExceptionCb, hInterface);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register interface exception callback failed!\n");
 // break;
 //}

 // Enumerate cameras of the frame grabber.
 nRet = MV_FG_UpdateDeviceList(hInterface, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update device list failed! %#x\n", nRet);
 break;
 }

 // Get the number of devices.
 unsigned int nDeviceNum = 0;
 nRet = MV_FG_GetNumDevices(hInterface, &nDeviceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)
 {
 printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

105

 // Display device information.
 if (false == PrintDeviceInfo(hInterface, nDeviceNum))
 {
 break;
 }

 // Select the device.
 int nDeviceIndex = -1;
 printf("Select a device: ");
 scanf_s("%d", &nDeviceIndex);
 ClearStdin();

 if (nDeviceIndex < 0 || nDeviceIndex >= (int)nDeviceNum)
 {
 printf("Invalid device index.\nQuit.\n");
 break;
 }

 // Open the device and get the device handle.
 nRet = MV_FG_OpenDevice(hInterface, (unsigned int)nDeviceIndex, &hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d device failed! %#x\n", nDeviceIndex, nRet);
 hDevice = NULL;
 break;
 }

 // Register the exception information callback function of the device.
 //nRet = MV_FG_RegisterExceptionCallBack(hDevice, ExceptionCb, hDevice);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register device exception callback failed!\n");
 // break;
 //}

 // Disable trigger mode.
 nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Turn off trigger mode failed! %#x\n", nRet);
 break;
 }

 // Get the number of stream channels.
 unsigned int nStreamNum = 0;
 nRet = MV_FG_GetNumStreams(hDevice, &nStreamNum);
 if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)
 {
 printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

106

 // Open stream channel (currently only one stream channel is supported at a time).
 nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open stream failed! %#x\n", nRet);
 break;
 }

 // Register the exception information callback function of the stream channel.
 //nRet = MV_FG_RegisterExceptionCallBack(hStream, ExceptionCb, hStream);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register stream exception callback failed!\n");
 // break;
 //}

 // Set the number of internal buffers for the SDK.
 nRet = MV_FG_SetBufferNum(hStream, BUFFER_NUMBER);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set buffer number failed! %#x\n", nRet);
 break;
 }

 // Create thread for image acquisition.
 void* hThreadHandle = (void*)_beginthreadex(NULL, 0, GrabbingThread, hStream, 0, NULL);
 if (NULL == hThreadHandle)
 {
 printf("Create thread failed!\n");
 break;
 }

 printf("Press any key to stop acquisition.\n");
 WaitForKeyPress();

 // Stop image acquisition thread.
 g_bExit = true;
 WaitForSingleObject(hThreadHandle, INFINITE);
 CloseHandle(hThreadHandle);
 hThreadHandle = NULL;
 } while (0);

 // Close the stream channel.
 if (NULL != hStream)
 {
 nRet = MV_FG_CloseStream(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close stream failed! %#x\n", nRet);
 }

Frame Grabber SDK (Windows-C) Developer Guide

107

 hStream = NULL;
 }

 // Close the device.
 if (NULL != hDevice)
 {
 nRet = MV_FG_CloseDevice(hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close device failed! %#x\n", nRet);
 }
 hDevice = NULL;
 }

 // Close the frame grabber.
 if (NULL != hInterface)
 {
 nRet = MV_FG_CloseInterface(hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close interface failed! %#x\n", nRet);
 }
 hInterface = NULL;
 }

 printf("Press any key to exit.\n");
 WaitForKeyPress();

 return 0;
}

A.5 Get Chunk Data

The following sample codes show how to enable and configure chunk data and get the chunk data
information.
#include <stdio.h>
#include <Windows.h>
#include <process.h>
#include <conio.h>
#include "MVFGControl.h"

#define BUFFER_NUMBER 3 // Number of requested buffers
#define CHUNK_ID_TIMESTAMP_LITTLE 0xa5a50101 // Timestamp
#define CHUNK_ID_EXPOSURE_LITTLE 0xa5a50103 // Exposure

// Wait for key press.
void WaitForKeyPress(void)
{
 while(!_kbhit())
 {

Frame Grabber SDK (Windows-C) Developer Guide

108

 Sleep(10);
 }
 _getch();
}

// Clear residual data from stdin.
void ClearStdin(void)
{
 char c = '\0';

 while (1)
 {
 c = getchar();
 if ('\n' == c || EOF == c)
 {
 break;
 }
 }
}

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)
{
 switch(enExceptionType)
 {
 case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
 {
 printf("Exception: Interface Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_DEVICE_DISCONNECT:
 {
 printf("Exception: Device Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
 {
 printf("Exception: Abnormal Image!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
 {
 printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_DISCONNECTED:
 {
 printf("Exception: Stream Disconnected!\n");
 break;
 }
 default:

Frame Grabber SDK (Windows-C) Developer Guide

109

 {
 printf("Unknown Exception!\n");
 break;
 }
 }
}

// Frame buffer information callback function.
void FrameCb(MV_FG_BUFFER_INFO* pstBufferInfo, void* pUser)
{
 if (pstBufferInfo)
 {
 // Print image information.
 printf("FrameNumber:%2I64d%, Width:%d, Height:%d, Chunk Num:%d\n",
 pstBufferInfo->nFrameID, pstBufferInfo->nWidth, pstBufferInfo->nHeight,
pstBufferInfo->nNumChunks);

 int nRet = 0;
 STREAMHANDLE hStream = (STREAMHANDLE)pUser;
 unsigned int nChunkNum = pstBufferInfo->nNumChunks; // Number of
chunks
 MV_FG_CHUNK_DATA_INFO stChunkDataInfo = { 0 }; // Chunk data
information

 // Print chunk data information.
 printf("********************\n");
 for (unsigned int i = 0; i < nChunkNum; i++)
 {
 memset(&stChunkDataInfo, 0, sizeof(MV_FG_CHUNK_DATA_INFO));
 nRet = MV_FG_GetBufferChunkData(hStream, pstBufferInfo, i, &stChunkDataInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get No.%d chunk data failed! %#x\n", i, nRet);
 printf("********************\n");
 return;
 }

 switch (stChunkDataInfo.nChunkID)
 {
 case CHUNK_ID_TIMESTAMP_LITTLE:
 printf("Chunk ID[%#x], Chunk length[%d], Chunk data[%d]\n",
 stChunkDataInfo.nChunkID, stChunkDataInfo.nChunkLen,
((uint32_t)stChunkDataInfo.pChunkData));
 break;
 case CHUNK_ID_EXPOSURE_LITTLE:
 printf("Chunk ID[%#x], Chunk length[%d], Chunk data[%f]\n",
 stChunkDataInfo.nChunkID, stChunkDataInfo.nChunkLen,
((float)stChunkDataInfo.pChunkData));
 break;
 default:
 break;

Frame Grabber SDK (Windows-C) Developer Guide

110

 }
 }
 printf("********************\n");
 }
}

// Print frame grabber information.
bool PrintInterfaceInfo(unsigned int nInterfaceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nInterfaceNum; i++)
 {
 MV_FG_INTERFACE_INFO stInterfaceInfo = { 0 };

 nRet = MV_FG_GetInterfaceInfo(i, &stInterfaceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d interface failed! %#x\n", i, nRet);
 return false;
 }

 switch (stInterfaceInfo.nTLayerType)
 {
 case MV_FG_CXP_INTERFACE:
 {
 printf("[CXP]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_INTERFACE:
 {
 printf("[GEV]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_INTERFACE:
 {
 printf("[CML]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chSerialNumber);
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

111

 default:
 {
 printf("Unknown interface type.\n");
 return false;
 }
 }
 }

 return true;
}

// Print device information.
bool PrintDeviceInfo(IFHANDLE hInterface, unsigned int nDeviceNum)
{
 int nRet = 0;

 for (unsigned int i = 0; i < nDeviceNum; i++)
 {
 MV_FG_DEVICE_INFO stDeviceInfo = { 0 };

 nRet = MV_FG_GetDeviceInfo(hInterface, i, &stDeviceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d device failed! %#x\n", i, nRet);
 return false;
 }

 switch (stDeviceInfo.nDevType)
 {
 case MV_FG_CXP_DEVICE:
 {
 printf("[CXP]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCXPDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_DEVICE:
 {
 printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stGEVDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chModelName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_DEVICE:
 {
 printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,

Frame Grabber SDK (Windows-C) Developer Guide

112

 stDeviceInfo.DevInfo.stCMLDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown device type.\n");
 return false;
 }
 }
 }

 return true;
}

int main()
{
 int nRet = 0;
 IFHANDLE hInterface = NULL;
 DEVHANDLE hDevice = NULL;
 STREAMHANDLE hStream = NULL;

 do
 {
 // Enumerate frame grabbers.
 bool bChanged = false;
 nRet = MV_FG_UpdateInterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update interface list failed! %#x\n", nRet);
 break;
 }

 // Get the number of frame grabbers.
 unsigned int nInterfaceNum = 0;
 nRet = MV_FG_GetNumInterfaces(&nInterfaceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)
 {
 printf("No interface found! return = %d, number = %d\n", nRet, nInterfaceNum);
 break;
 }

 // Display frame grabber information.
 if (false == PrintInterfaceInfo(nInterfaceNum))
 {
 break;
 }

 // Select frame grabber.

Frame Grabber SDK (Windows-C) Developer Guide

113

 int nInterfaceIndex = -1;
 printf("Select an interface: ");
 scanf_s("%d", &nInterfaceIndex);
 ClearStdin();

 if (nInterfaceIndex < 0 || nInterfaceIndex >= (int)nInterfaceNum)
 {
 printf("Invalid interface index.\nQuit.\n");
 break;
 }

 // Enable the frame grabber with specified access mode and get the frame grabber handle.
 const int nAccessMode = 2; // 0 - Unknown, 1 - Read Only, 2 - Control, 3 - Exclusive
 nRet = MV_FG_OpenInterfaceEx((unsigned int)nInterfaceIndex, nAccessMode, &hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d interface failed! %#x\n", nInterfaceIndex, nRet);
 break;
 }

 // Register the exception information callback function of the frame grabber.
 //nRet = MV_FG_RegisterExceptionCallBack(hInterface, ExceptionCb, hInterface);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register interface exception callback failed!\n");
 // break;
 //}

 // Enumerate cameras of the frame grabber.
 nRet = MV_FG_UpdateDeviceList(hInterface, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update device list failed! %#x\n", nRet);
 break;
 }

 // Get the number of devices.
 unsigned int nDeviceNum = 0;
 nRet = MV_FG_GetNumDevices(hInterface, &nDeviceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)
 {
 printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
 break;
 }

 // Display device information.
 if (false == PrintDeviceInfo(hInterface, nDeviceNum))
 {
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

114

 // Select device.
 int nDeviceIndex = -1;
 printf("Select a device: ");
 scanf_s("%d", &nDeviceIndex);
 ClearStdin();

 if (nDeviceIndex < 0 || nDeviceIndex >= (int)nDeviceNum)
 {
 printf("Invalid device index.\nQuit.\n");
 break;
 }

 // Open the device and get the device handle.
 nRet = MV_FG_OpenDevice(hInterface, (unsigned int)nDeviceIndex, &hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d device failed! %#x\n", nDeviceIndex, nRet);
 hDevice = NULL;
 break;
 }

 // Register the exception information callback function of the device.
 //nRet = MV_FG_RegisterExceptionCallBack(hDevice, ExceptionCb, hDevice);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register device exception callback failed!\n");
 // break;
 //}

 // Enable chunk mode.
 nRet = MV_FG_SetBoolValue(hDevice, "ChunkModeActive", true);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set chunk mode failed! %#x\n", nRet);
 break;
 }

 // Set Chunk Selector to Exposure.
 nRet = MV_FG_SetEnumValueByString(hDevice, "ChunkSelector", "Exposure");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set exposure chunk failed! %#x\n", nRet);
 break;
 }

 // Enable chunk.
 nRet = MV_FG_SetBoolValue(hDevice, "ChunkEnable", true);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set exposure chunk enable failed! %#x\n", nRet);
 break;

Frame Grabber SDK (Windows-C) Developer Guide

115

 }

 // Set Chunk Selector to Timestamp.
 nRet = MV_FG_SetEnumValueByString(hDevice, "ChunkSelector", "Timestamp");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set timestamp chunk failed! %#x\n", nRet);
 break;
 }

 // Enable chunk.
 nRet = MV_FG_SetBoolValue(hDevice, "ChunkEnable", true);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set timestamp chunk enable failed! %#x\n", nRet);
 break;
 }

 // Disable trigger mode.
 nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Turn off trigger mode failed! %#x\n", nRet);
 break;
 }

 // Get the number of stream channels.
 unsigned int nStreamNum = 0;
 nRet = MV_FG_GetNumStreams(hDevice, &nStreamNum);
 if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)
 {
 printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
 break;
 }

 // Open stream channel (currently only one stream channel is supported at a time).
 nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open stream failed! %#x\n", nRet);
 break;
 }

 // Register the exception information callback function of the stream channel.
 //nRet = MV_FG_RegisterExceptionCallBack(hStream, ExceptionCb, hStream);
 //if (MV_FG_SUCCESS != nRet)
 //{
 // printf("Register stream exception callback failed!\n");
 // break;
 //}

Frame Grabber SDK (Windows-C) Developer Guide

116

 // Set the number of internal buffers for the SDK.
 nRet = MV_FG_SetBufferNum(hStream, BUFFER_NUMBER);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set buffer number failed! %#x\n", nRet);
 break;
 }

 // Register the frame buffer information callback function.
 nRet = MV_FG_RegisterFrameCallBack(hStream, FrameCb, hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Register frame callback failed! %#x\n", nRet);
 break;
 }

 // Start image acquisition.
 nRet = MV_FG_StartAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Start acquistion failed! %#x\n", nRet);
 return nRet;
 }

 printf("Press any key to stop acquisition.\n");
 WaitForKeyPress();

 // Stop image acquisition.
 nRet = MV_FG_StopAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Stop acquisition failed! %#x\n", nRet);
 return nRet;
 }
 } while (0);

 // Close stream channel.
 if (NULL != hStream)
 {
 nRet = MV_FG_CloseStream(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close stream failed! %#x\n", nRet);
 }
 hStream = NULL;
 }

 // Close the device.
 if (NULL != hDevice)
 {
 nRet = MV_FG_CloseDevice(hDevice);

Frame Grabber SDK (Windows-C) Developer Guide

117

 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close device failed! %#x\n", nRet);
 }
 hDevice = NULL;
 }

 // Close the frame grabber.
 if (NULL != hInterface)
 {
 nRet = MV_FG_CloseInterface(hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close interface failed! %#x\n", nRet);
 }
 hInterface = NULL;
 }

 printf("Press any key to exit.\n");
 WaitForKeyPress();

 return 0;
}

A.6 Load Dynamic Link Library

The following sample codes show how to use the frame grabber SDK with dynamic calling.
#include <stdio.h>
#include <Windows.h>
#include <process.h>
#include <conio.h>
#include "MVFGDefines.h"
#include "MVFGErrorDefine.h"

typedef unsigned char* (__stdcall * DLL_GetSDKVersion) ();

typedef int (__stdcall * DLL_UpdateInterfaceList) (IN unsigned int nTLayerType, OUT
bool8_t *pbChanged);
typedef int (__stdcall * DLL_GetNumInterfaces) (OUT unsigned int *pnNumIfaces);
typedef int (__stdcall * DLL_GetInterfaceInfo) (IN unsigned int nIndex, OUT
MV_FG_INTERFACE_INFO *pstIfaceInfo);
typedef bool (__stdcall * DLL_GetInterfaceInfoEx) (IN unsigned int nIndex, IN
MV_FG_INTERFACE_INFO_CMD enIfaceInfoCmd, OUT MV_FG_INFO_VALUE *pstInfoValue);
typedef int (__stdcall * DLL_OpenInterface) (IN unsigned int nIndex, OUT
IFHANDLE* phIface);
typedef int (__stdcall * DLL_OpenInterfaceEx) (IN unsigned int nIndex, IN int
nAccess, OUT IFHANDLE* phIface);
typedef int (__stdcall * DLL_CloseInterface) (IN IFHANDLE hIface);
typedef int (__stdcall * DLL_UpdateDeviceList) (IN IFHANDLE hIface, OUT bool8_t
*pbChanged);

Frame Grabber SDK (Windows-C) Developer Guide

118

typedef int (__stdcall * DLL_GetNumDevices) (IN IFHANDLE hIface, OUT
unsigned int *pnNumDevices);
typedef int (__stdcall * DLL_GetDeviceInfo) (IN IFHANDLE hIface, IN unsigned
int nIndex, OUT MV_FG_DEVICE_INFO *pstDevInfo);
typedef int (__stdcall * DLL_OpenDevice) (IN IFHANDLE hIface, IN unsigned
int nIndex, OUT DEVHANDLE* phDevice);
typedef int (__stdcall * DLL_CloseDevice) (IN DEVHANDLE hDevice);
typedef int (__stdcall * DLL_GetNumStreams) (IN DEVHANDLE hDevice, OUT
unsigned int *pnNumStreams);
typedef int (__stdcall * DLL_OpenStream) (IN DEVHANDLE hDevice, IN
unsigned int nIndex, OUT STREAMHANDLE* phStream);
typedef int (__stdcall * DLL_CloseStream) (IN STREAMHANDLE hStream);
typedef int (__stdcall * DLL_SetBufferNum) (IN STREAMHANDLE hStream, IN
unsigned int nBufferNum);
typedef int (__stdcall * DLL_RegisterFrameCallBack) (IN STREAMHANDLE hStream, IN
MV_FG_FrameCallBack cbFrame, IN void* pUser);
typedef int (__stdcall * DLL_GetFrameBuffer) (IN STREAMHANDLE hStream, OUT
MV_FG_BUFFER_INFO* pstBufferInfo, IN unsigned int nTimeout);
typedef int (__stdcall * DLL_ReleaseFrameBuffer) (IN STREAMHANDLE hStream, IN
MV_FG_BUFFER_INFO* pstBufferInfo);
typedef int (__stdcall * DLL_GetBufferChunkData) (IN STREAMHANDLE hStream, IN
MV_FG_BUFFER_INFO* pstBufferInfo, IN unsigned int nIndex, OUT MV_FG_CHUNK_DATA_INFO*
pstChunkDataInfo);
typedef int (__stdcall * DLL_GetPayloadSize) (IN STREAMHANDLE hStream, OUT
unsigned int* pnPayloadSize);
typedef int (__stdcall * DLL_AnnounceBuffer) (IN STREAMHANDLE hStream, IN
void *pBuffer, IN unsigned int nSize, IN void *pPrivate, OUT BUFFERHANDLE *phBuffer);
typedef int (__stdcall * DLL_RevokeBuffer) (IN STREAMHANDLE hStream, IN
BUFFERHANDLE hBuffer, OUT void **pBuffer, OUT void **pPrivate);
typedef int (__stdcall * DLL_FlushQueue) (IN STREAMHANDLE hStream, IN
MV_FG_BUFFER_QUEUE_TYPE enQueueType);
typedef int (__stdcall * DLL_StartAcquisition) (IN STREAMHANDLE hStream);
typedef int (__stdcall * DLL_StopAcquisition) (IN STREAMHANDLE hStream);
typedef int (__stdcall * DLL_GetImageBuffer) (IN STREAMHANDLE hStream, OUT
BUFFERHANDLE *phBuffer, IN unsigned int nTimeout);
typedef int (__stdcall * DLL_GetBufferInfo) (IN BUFFERHANDLE hBuffer, OUT
MV_FG_BUFFER_INFO* pstBufferInfo);
typedef int (__stdcall * DLL_QueueBuffer) (IN BUFFERHANDLE hBuffer);
typedef int (__stdcall * DLL_GetXMLFile) (IN PORTHANDLE hPort, IN OUT
unsigned char* pData, IN unsigned int nDataSize, OUT unsigned int* pnDataLen);
typedef int (__stdcall * DLL_GetNodeAccessMode) (IN PORTHANDLE hPort, IN const
char * strName, OUT MV_FG_NODE_ACCESS_MODE *penAccessMode);
typedef int (__stdcall * DLL_GetNodeInterfaceType) (IN PORTHANDLE hPort, IN const
char * strName, OUT MV_FG_NODE_INTERFACE_TYPE *penInterfaceType);
typedef int (__stdcall * DLL_GetIntValue) (IN PORTHANDLE hPort, IN const
char* strKey, OUT MV_FG_INTVALUE *pstIntValue);
typedef int (__stdcall * DLL_SetIntValue) (IN PORTHANDLE hPort, IN const
char* strKey, IN int64_t nValue);
typedef int (__stdcall * DLL_GetEnumValue) (IN PORTHANDLE hPort, IN const
char* strKey, OUT MV_FG_ENUMVALUE *pstEnumValue);
typedef int (__stdcall * DLL_SetEnumValue) (IN PORTHANDLE hPort, IN const

Frame Grabber SDK (Windows-C) Developer Guide

119

char* strKey, IN unsigned int nValue);
typedef int (__stdcall * DLL_SetEnumValueByString) (IN PORTHANDLE hPort, IN const
char* strKey, IN const char* strValue);
typedef int (__stdcall * DLL_GetFloatValue) (IN PORTHANDLE hPort, IN const
char* strKey, OUT MV_FG_FLOATVALUE *pstFloatValue);
typedef int (__stdcall * DLL_SetFloatValue) (IN PORTHANDLE hPort, IN const
char* strKey, IN float fValue);
typedef int (__stdcall * DLL_GetBoolValue) (IN PORTHANDLE hPort, IN const
char* strKey, OUT bool8_t *pbValue);
typedef int (__stdcall * DLL_SetBoolValue) (IN PORTHANDLE hPort, IN const
char* strKey, IN bool8_t bValue);
typedef int (__stdcall * DLL_GetStringValue) (IN PORTHANDLE hPort, IN const
char* strKey, OUT MV_FG_STRINGVALUE *pstStringValue);
typedef int (__stdcall * DLL_SetStringValue) (IN PORTHANDLE hPort, IN const
char* strKey, IN const char* strValue);
typedef int (__stdcall * DLL_SetCommandValue) (IN PORTHANDLE hPort, IN const
char* strKey);
typedef int (__stdcall * DLL_FeatureSave) (IN PORTHANDLE hPort, IN const
char* strFileName);
typedef int (__stdcall * DLL_FeatureLoad) (IN PORTHANDLE hPort, IN const
char* strFileName);
typedef int (__stdcall * DLL_RegisterExceptionCallBack)(IN PORTHANDLE hPort, IN
MV_FG_ExceptionCallBack cbException, IN void* pUser);
typedef int (__stdcall * DLL_ReleaseTLayerResource) (IN unsigned int nTLayerType);

#define BUFFER_NUMBER 3 // Number of requested buffers
#define FILE_NAME_LEN 256 // The maximum length of file name
#define SAVE_IMAGE_NUM 10 // The maximum number of saved images
#define TIMEOUT 1000 // Timeout; unit: millisecond (ms)

bool g_bExit = false; // Stop acquisition

// Thread parameters
struct MultiThrParam
{
 void* pUser; // User-defined parameter
 HINSTANCE hDll; // Dynamic link library handle
};

// Wait for key press.
void WaitForKeyPress(void)
{
 while(!_kbhit())
 {
 Sleep(10);
 }
 _getch();
}

// Clear residual data from stdin.
void ClearStdin(void)

Frame Grabber SDK (Windows-C) Developer Guide

120

{
 char c = '\0';

 while (1)
 {
 c = getchar();
 if ('\n' == c || EOF == c)
 {
 break;
 }
 }
}

// Exception information callback function.
void ExceptionCb(MV_FG_EXCEPTION_TYPE enExceptionType, void* pUser)
{
 switch(enExceptionType)
 {
 case EXCEPTION_TYPE_INTERFACE_DISCONNECT:
 {
 printf("Exception: Interface Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_DEVICE_DISCONNECT:
 {
 printf("Exception: Device Disconnected!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_ABNORMAL_IMAGE:
 {
 printf("Exception: Abnormal Image!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_LIST_OVERFLOW:
 {
 printf("Exception: Buffer List Overflow, Clear the Oldest Frame!\n");
 break;
 }
 case EXCEPTION_TYPE_STREAM_DISCONNECTED:
 {
 printf("Exception: Stream Disconnected!\n");
 break;
 }
 default:
 {
 printf("Unknown Exception!\n");
 break;
 }
 }
}

Frame Grabber SDK (Windows-C) Developer Guide

121

// Save the original image data.
void SaveRawImage(int nImageNo, MV_FG_BUFFER_INFO* pstImageInfo)
{
 if (pstImageInfo)
 {
 char szFileName[FILE_NAME_LEN] = { 0 };

 sprintf_s(szFileName, FILE_NAME_LEN, "Image_w%d_h%d_n%d.raw", pstImageInfo->nWidth,
pstImageInfo->nHeight, nImageNo);

 FILE* pImageFile = NULL;
 if ((0 != fopen_s(&pImageFile, szFileName, "wb")) || (NULL == pImageFile))
 {
 return;
 }

 fwrite(pstImageInfo->pBuffer, 1, pstImageInfo->nFilledSize, pImageFile);
 fclose(pImageFile);
 }
}

// Image acquisition thread.
unsigned int __stdcall GrabbingThread(void* pUser)
{
 if (pUser)
 {
 MultiThrParam* pstThreadParam = (MultiThrParam*)pUser;
 MV_FG_BUFFER_INFO stFrameInfo = { 0 }; // Image information
 int nSaveImage = 0; // Number of saved images
 int nRet = 0;

 DLL_StartAcquisition DLLStartAcquisition =
(DLL_StartAcquisition)GetProcAddress(pstThreadParam->hDll, "MV_FG_StartAcquisition");
 DLL_GetFrameBuffer DLLGetFrameBuffer =
(DLL_GetFrameBuffer)GetProcAddress(pstThreadParam->hDll, "MV_FG_GetFrameBuffer");
 DLL_ReleaseFrameBuffer DLLReleaseFrameBuffer =
(DLL_ReleaseFrameBuffer)GetProcAddress(pstThreadParam->hDll, "MV_FG_ReleaseFrameBuffer");
 DLL_StopAcquisition DLLStopAcquisition =
(DLL_StopAcquisition)GetProcAddress(pstThreadParam->hDll, "MV_FG_StopAcquisition");

 // Start image acquisition.
 nRet = DLLStartAcquisition(pstThreadParam->pUser);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Start acquistion failed! %#x\n", nRet);
 return nRet;
 }
 g_bExit = false;

 while (!g_bExit)
 {

Frame Grabber SDK (Windows-C) Developer Guide

122

 // Get the buffer information of a frame.
 nRet = DLLGetFrameBuffer(pstThreadParam->pUser, &stFrameInfo, TIMEOUT);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get frame buffer info failed! %#x\n", nRet);
 continue;
 }
 else
 {
 printf("FrameNumber:%2I64d%, Width:%d, Height:%d\n", stFrameInfo.nFrameID,
stFrameInfo.nWidth, stFrameInfo.nHeight);

 if (nSaveImage < SAVE_IMAGE_NUM)
 {
 SaveRawImage(++nSaveImage, &stFrameInfo);
 }
 }

 // Insert the buffer back to the input queue.
 nRet = DLLReleaseFrameBuffer(pstThreadParam->pUser, &stFrameInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Release frame buffer failed! %#x\n", nRet);
 break;
 }
 }

 // Stop image acquisition.
 nRet = DLLStopAcquisition(pstThreadParam->pUser);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Stop acquisition failed! %#x\n", nRet);
 return nRet;
 }
 }

 return MV_FG_SUCCESS;
}

// Print frame grabber information.
bool PrintInterfaceInfo(HINSTANCE hDll, unsigned int nInterfaceNum)
{
 int nRet = 0;

 DLL_GetInterfaceInfo DLLGetInterfaceInfo = (DLL_GetInterfaceInfo)GetProcAddress(hDll,
"MV_FG_GetInterfaceInfo");

 for (unsigned int i = 0; i < nInterfaceNum; i++)
 {
 MV_FG_INTERFACE_INFO stInterfaceInfo = { 0 };

Frame Grabber SDK (Windows-C) Developer Guide

123

 nRet = DLLGetInterfaceInfo(i, &stInterfaceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d interface failed! %#x\n", i, nRet);
 return false;
 }

 switch (stInterfaceInfo.nTLayerType)
 {
 case MV_FG_CXP_INTERFACE:
 {
 printf("[CXP]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_INTERFACE:
 {
 printf("[GEV]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_INTERFACE:
 {
 printf("[CML]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown interface type.\n");
 return false;
 }
 }
 }

 return true;
}

// Print device information.
bool PrintDeviceInfo(HINSTANCE hDll, IFHANDLE hInterface, unsigned int nDeviceNum)
{
 int nRet = 0;

Frame Grabber SDK (Windows-C) Developer Guide

124

 DLL_GetDeviceInfo DLLGetDeviceInfo = (DLL_GetDeviceInfo)GetProcAddress(hDll,
"MV_FG_GetDeviceInfo");

 for (unsigned int i = 0; i < nDeviceNum; i++)
 {
 MV_FG_DEVICE_INFO stDeviceInfo = { 0 };

 nRet = DLLGetDeviceInfo(hInterface, i, &stDeviceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d device failed! %#x\n", i, nRet);
 return false;
 }

 switch (stDeviceInfo.nDevType)
 {
 case MV_FG_CXP_DEVICE:
 {
 printf("[CXP]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCXPDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_GEV_DEVICE:
 {
 printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stGEVDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chModelName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chSerialNumber);
 break;
 }
 case MV_FG_CAMERALINK_DEVICE:
 {
 printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCMLDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chSerialNumber);
 break;
 }
 default:
 {
 printf("Unknown device type.\n");
 return false;
 }
 }
 }

Frame Grabber SDK (Windows-C) Developer Guide

125

 return true;
}

int main()
{
 HINSTANCE MVFGCtrlDll = NULL; // Handle of MVFGControl.dll

 // The default path for the dynamic link library is System Disk:\Program Files (x86)\Common
Files\MVS\Runtime
 MVFGCtrlDll = LoadLibrary("MVFGControl.dll");
 if (NULL == MVFGCtrlDll)
 {
 DWORD errCode = GetLastError();
 printf("Error code! [%ld]\n",errCode);
 printf("Press any key to exit.\n");
 WaitForKeyPress();
 return -1;
 }

 int nRet = 0;
 IFHANDLE hInterface = NULL;
 DEVHANDLE hDevice = NULL;
 STREAMHANDLE hStream = NULL;

 do
 {
 // Enumerate frame grabbers.
 bool bChanged = false;
 DLL_UpdateInterfaceList DLLUpdateInterfaceList =
(DLL_UpdateInterfaceList)GetProcAddress(MVFGCtrlDll, "MV_FG_UpdateInterfaceList");
 nRet = DLLUpdateInterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update interface list failed! %#x\n", nRet);
 break;
 }

 // Get the number of frame grabbers.
 unsigned int nInterfaceNum = 0;
 DLL_GetNumInterfaces DLLGetNumInterfaces =
(DLL_GetNumInterfaces)GetProcAddress(MVFGCtrlDll, "MV_FG_GetNumInterfaces");
 nRet = DLLGetNumInterfaces(&nInterfaceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNum)
 {
 printf("No interface found! return = %d, number = %d\n", nRet, nInterfaceNum);
 break;
 }

 // Display frame grabber information.

Frame Grabber SDK (Windows-C) Developer Guide

126

 if (false == PrintInterfaceInfo(MVFGCtrlDll, nInterfaceNum))
 {
 break;
 }

 // Select frame grabber.
 int nInterfaceIndex = -1;
 printf("Select an interface: ");
 scanf_s("%d", &nInterfaceIndex);
 ClearStdin();

 if (nInterfaceIndex < 0 || nInterfaceIndex >= (int)nInterfaceNum)
 {
 printf("Invalid interface index.\nQuit.\n");
 break;
 }

 // Open the frame grabber with specified access mode and get the frame grabber handle.
 const int nAccessMode = 2; // 0 - Unknown, 1 - Read Only, 2 - Control, 3 - Exclusive
 DLL_OpenInterfaceEx DLLOpenInterfaceEx =
(DLL_OpenInterfaceEx)GetProcAddress(MVFGCtrlDll, "MV_FG_OpenInterfaceEx");
 nRet = DLLOpenInterfaceEx((unsigned int)nInterfaceIndex, nAccessMode, &hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d interface failed! %#x\n", nInterfaceIndex, nRet);
 break;
 }

 // Enumerate cameras of the frame grabber.
 DLL_UpdateDeviceList DLLUpdateDeviceList =
(DLL_UpdateDeviceList)GetProcAddress(MVFGCtrlDll, "MV_FG_UpdateDeviceList");
 nRet = DLLUpdateDeviceList(hInterface, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update device list failed! %#x\n", nRet);
 break;
 }

 // Get the number of devices.
 unsigned int nDeviceNum = 0;
 DLL_GetNumDevices DLLGetNumDevices =
(DLL_GetNumDevices)GetProcAddress(MVFGCtrlDll, "MV_FG_GetNumDevices");
 nRet = DLLGetNumDevices(hInterface, &nDeviceNum);
 if (MV_FG_SUCCESS != nRet || 0 == nDeviceNum)
 {
 printf("No device found! return = %d, number = %d\n", nRet, nDeviceNum);
 break;
 }

 // Display device information.
 if (false == PrintDeviceInfo(MVFGCtrlDll, hInterface, nDeviceNum))

Frame Grabber SDK (Windows-C) Developer Guide

127

 {
 break;
 }

 // Select device.
 int nDeviceIndex = -1;
 printf("Select a device: ");
 scanf_s("%d", &nDeviceIndex);
 ClearStdin();

 if (nDeviceIndex < 0 || nDeviceIndex >= (int)nDeviceNum)
 {
 printf("Invalid device index.\nQuit.\n");
 break;
 }

 // Open the device and get the device handle.
 DLL_OpenDevice DLLOpenDevice = (DLL_OpenDevice)GetProcAddress(MVFGCtrlDll,
"MV_FG_OpenDevice");
 nRet = DLLOpenDevice(hInterface, (unsigned int)nDeviceIndex, &hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d device failed! %#x\n", nDeviceIndex, nRet);
 hDevice = NULL;
 break;
 }

 // Disable trigger mode.
 DLL_SetEnumValueByString DLLSetEnumValueByString =
(DLL_SetEnumValueByString)GetProcAddress(MVFGCtrlDll, "MV_FG_SetEnumValueByString");
 nRet = DLLSetEnumValueByString(hDevice, "TriggerMode", "Off");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Turn off trigger mode failed! %#x\n", nRet);
 break;
 }

 // Get the number of stream channels.
 unsigned int nStreamNum = 0;
 DLL_GetNumStreams DLLGetNumStreams =
(DLL_GetNumStreams)GetProcAddress(MVFGCtrlDll, "MV_FG_GetNumStreams");
 nRet = DLLGetNumStreams(hDevice, &nStreamNum);
 if (MV_FG_SUCCESS != nRet || 0 == nStreamNum)
 {
 printf("No stream available! return = %d, number = %d\n", nRet, nStreamNum);
 break;
 }

 // Open stream channel (currently only one stream channel is supported at a time).
 DLL_OpenStream DLLOpenStream = (DLL_OpenStream)GetProcAddress(MVFGCtrlDll,
"MV_FG_OpenStream");

Frame Grabber SDK (Windows-C) Developer Guide

128

 nRet = DLLOpenStream(hDevice, 0, &hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open stream failed! %#x\n", nRet);
 break;
 }

 // Set the number of internal buffers for the SDK.
 DLL_SetBufferNum DLLSetBufferNum = (DLL_SetBufferNum)GetProcAddress(MVFGCtrlDll,
"MV_FG_SetBufferNum");
 nRet = DLLSetBufferNum(hStream, BUFFER_NUMBER);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Set buffer number failed! %#x\n", nRet);
 break;
 }

 // Create thread for image acquisition.
 MultiThrParam stThreadParam = { 0 };
 stThreadParam.pUser = hStream;
 stThreadParam.hDll = MVFGCtrlDll;
 void* hThreadHandle = (void*)_beginthreadex(NULL, 0, GrabbingThread,
(void*)&stThreadParam, 0, NULL);
 if (NULL == hThreadHandle)
 {
 printf("Create thread failed!\n");
 break;
 }

 printf("Press any key to stop acquisition.\n");
 WaitForKeyPress();

 // Stop image acquisition thread.
 g_bExit = true;
 WaitForSingleObject(hThreadHandle, INFINITE);
 CloseHandle(hThreadHandle);
 hThreadHandle = NULL;
 } while (0);

 // Close stream channel.
 if (NULL != hStream)
 {
 DLL_CloseStream DLLCloseStream = (DLL_CloseStream)GetProcAddress(MVFGCtrlDll,
"MV_FG_CloseStream");
 nRet = DLLCloseStream(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close stream failed! %#x\n", nRet);
 }
 hStream = NULL;
 }

Frame Grabber SDK (Windows-C) Developer Guide

129

 // Close the device.
 if (NULL != hDevice)
 {
 DLL_CloseDevice DLLCloseDevice = (DLL_CloseDevice)GetProcAddress(MVFGCtrlDll,
"MV_FG_CloseDevice");
 nRet = DLLCloseDevice(hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close device failed! %#x\n", nRet);
 }
 hDevice = NULL;
 }

 // Close the frame grabber.
 if (NULL != hInterface)
 {
 DLL_CloseInterface DLLCloseInterface = (DLL_CloseInterface)GetProcAddress(MVFGCtrlDll,
"MV_FG_CloseInterface");
 nRet = DLLCloseInterface(hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close interface failed! %#x\n", nRet);
 }
 hInterface = NULL;
 }

 FreeLibrary(MVFGCtrlDll);

 printf("Press any key to exit.\n");
 WaitForKeyPress();

 return 0;
}

A.7 Receive Events

The following sample codes show how to configure the frame grabber event, how to register event
callback, and how to handle the event information received in the callback function.
#include <Windows.h>
#include <conio.h>
#include <stdio.h>
#include <process.h>
#include "MVFGControl.h"

bool g_bExit = FALSE;
#define BUFFER_NUMBER 3 // Number of requested buffers

void __stdcall EventCallBack(MV_FG_EVENT_INFO* pstEventInfo, void* pUser)

Frame Grabber SDK (Windows-C) Developer Guide

130

{
 static int nEventNum = 0;

 nEventNum++;

 if (NULL != pstEventInfo)
 {
 printf("%d Event: name %s id 0x%x time %lld \r\n", nEventNum, pstEventInfo->EventName,
pstEventInfo->nEventID, pstEventInfo->nTimestamp);
 }
}

// Wait for key press.
void WaitForKeyPress(void)
{
 while(!_kbhit())
 {
 Sleep(10);
 }
 _getch();
}

// Clear residual data from stdin.
void ClearStdin(void)
{
 char c = '0';

 do
 {
 c = getchar();
 if (c == '\n' ||c == EOF)
 {
 break;
 }
 }
 while(TRUE);
}

// Stream acquiring thread.
unsigned int __stdcall GrabbingThread(void* pUser)
{
 if (pUser)
 {
 STREAMHANDLE hStream = (STREAMHANDLE)pUser;
 BUFFERHANDLE hBuffer = NULL;
 MV_FG_BUFFER_INFO stFrameInfo = {0};
 int nSaveImage = 10;
 int nFrameNum = 0;

 // Start acquiring images.
 int nRet = MV_FG_StartAcquisition(hStream);

Frame Grabber SDK (Windows-C) Developer Guide

131

 if (MV_FG_SUCCESS != nRet)
 {
 printf("Start Acquisition failed, %#x\n", nRet);
 return nRet;
 }

 while(!g_bExit)
 {
 // Get the image buffer.
 nRet = MV_FG_GetImageBuffer(hStream, &hBuffer, 1000);
 if (MV_FG_SUCCESS == nRet)
 {
 nRet = MV_FG_GetBufferInfo(hBuffer, &stFrameInfo);
 if (MV_FG_SUCCESS == nRet)
 {
 nFrameNum++;
 printf("FrameNumber %8d: %-8I64d\tWidth: %d\tHeight: %d\n", nFrameNum,
stFrameInfo.nFrameID, stFrameInfo.nWidth, stFrameInfo.nHeight);
 }

 // Insert the image buffer back to the input queue.
 nRet = MV_FG_QueueBuffer(hBuffer);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Queue Buffer error, %#x\n", nRet);
 break;
 }
 }
 else
 {
 printf("Get image buffer failed, %#x\n", nRet);
 }

 }

 // Stop acquisition.
 nRet = MV_FG_StopAcquisition(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Stop Acquisition failed, %#x\n", nRet);
 return nRet;
 }
 }

 return MV_FG_SUCCESS;
}

int main(int argc, char** argv)
{
 int nRet = MV_FG_SUCCESS;
 IFHANDLE hInterface = NULL;

Frame Grabber SDK (Windows-C) Developer Guide

132

 DEVHANDLE hDevice = NULL;
 STREAMHANDLE hStream = NULL;
 BUFFERHANDLE hBuffer[BUFFER_NUMBER] = {0};
 void* pBuffer[BUFFER_NUMBER] = {0};

 do
 {
 // Enumerate frame grabbers.
 bool bChanged = false;
 nRet = MV_FG_UpdateInterfaceList(MV_FG_CXP_INTERFACE | MV_FG_GEV_INTERFACE |
MV_FG_CAMERALINK_INTERFACE, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update Interface List error, %#x\n", nRet);
 break;
 }

 // Get the number of frame grabbers.
 unsigned int nInterfaceNumber = 0;
 nRet = MV_FG_GetNumInterfaces(&nInterfaceNumber);
 if (MV_FG_SUCCESS != nRet || 0 == nInterfaceNumber)
 {
 printf("No Interface found\n");
 break;
 }

 // Print the frame grabber information.
 for (unsigned int i = 0; i < nInterfaceNumber; i++)
 {
 MV_FG_INTERFACE_INFO stInterfaceInfo = {0};

 nRet = MV_FG_GetInterfaceInfo(i, &stInterfaceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get info of No.%d Interface error, %#x\n", i, nRet);
 break;
 }

 if (stInterfaceInfo.nTLayerType == MV_FG_CXP_INTERFACE)
 {
 printf("[CXP]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCXPIfaceInfo.chSerialNumber);
 }
 else if (stInterfaceInfo.nTLayerType == MV_FG_GEV_INTERFACE)
 {
 printf("[GEV]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chDisplayName,

Frame Grabber SDK (Windows-C) Developer Guide

133

 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stGEVIfaceInfo.chSerialNumber);
 }
 else if (stInterfaceInfo.nTLayerType == MV_FG_CAMERALINK_INTERFACE)
 {
 printf("[CML]No.%d Interface:
\n\tDisplayName: %s\n\tInterfaceID: %s\n\tSerialNumber:%s\n", i,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chDisplayName,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chInterfaceID,
 stInterfaceInfo.IfaceInfo.stCMLIfaceInfo.chSerialNumber);
 }
 }
 if (MV_FG_SUCCESS != nRet)
 {
 break;
 }

 // Select a frame grabber and get the index.
 int nSelectedInterfaceIndex = -1;
 printf("Select an interface: ");
 scanf_s("%d", &nSelectedInterfaceIndex);
 ClearStdin();

 if ((nSelectedInterfaceIndex < 0) || (nSelectedInterfaceIndex >= (int)nInterfaceNumber))
 {
 printf("invalid interface index, Quit\n");
 break;
 }

 // Open the frame grabber. The frame grabber handle will be returned.
 nRet = MV_FG_OpenInterface(nSelectedInterfaceIndex, &hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open No.%d Interface error, %#x\n", nSelectedInterfaceIndex, nRet);
 break;
 }

 // Register the callback function for events
 nRet = MV_FG_RegisterEventCallBack(hInterface, "ReceiveImageFrameStart0", EventCallBack,
NULL);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("MV_FG_RegisterEventCallBack event %s error, %#x\n", "ReceiveImageFrameStart0",
nRet);
 break;
 }

 // Set the event type to stream event (you can set types of other events under the camera
node EventCategory)
 nRet = MV_FG_SetEnumValueByString(hInterface, "EventCategory", "StreamEvent");
 if (MV_FG_SUCCESS != nRet)

Frame Grabber SDK (Windows-C) Developer Guide

134

 {
 printf("MV_FG_SetEnumValueByString EventCategory %s error, %#x\n", "StreamEvent",
nRet);
 break;
 }

 // Set the event channel (Channel0-Channel3)
 nRet = MV_FG_SetEnumValueByString(hInterface, "ChannelSelector", "Channel0");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("MV_FG_SetEnumValueByString ChannelSelector %s error, %#x\n", "Channel0",
nRet);
 break;
 }

 // Set the specific event (you can set other specific events under the camera node
EventSelector)
 nRet = MV_FG_SetEnumValueByString(hInterface, "EventSelector",
"ReceiveImageFrameStart0");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("MV_FG_SetEnumValueByString EventSelector %s error, %#x\n",
"ReceiveImageFrameStart0", nRet);
 break;
 }

 // Enable the event notification
 nRet = MV_FG_SetEnumValueByString(hInterface, "EventNotification", "On");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("MV_FG_SetEnumValueByString EventNotification %s error, %#x\n", "On", nRet);
 break;
 }

 // Enumerate cameras of the frame grabber.
 nRet = MV_FG_UpdateDeviceList(hInterface, &bChanged);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Update Device list error, %#x\n", nRet);
 break;
 }

 // Get and print the device information.
 unsigned int nDeviceNumber = 0;
 nRet = MV_FG_GetNumDevices(hInterface, &nDeviceNumber);
 if (MV_FG_SUCCESS != nRet || 0 == nDeviceNumber)
 {
 printf("No devices found, %#x\n", nRet);
 break;
 }

Frame Grabber SDK (Windows-C) Developer Guide

135

 for (unsigned int i = 0; i < nDeviceNumber; i++)
 {
 MV_FG_DEVICE_INFO stDeviceInfo = {0};

 nRet = MV_FG_GetDeviceInfo(hInterface, i, &stDeviceInfo);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get Info of No.%u Device error, %#x\n", i, nRet);
 break;
 }

 if (stDeviceInfo.nDevType == MV_FG_CXP_DEVICE)
 {
 printf("[CXP]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCXPDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCXPDevInfo.chSerialNumber);
 }
 else if (stDeviceInfo.nDevType == MV_FG_GEV_DEVICE)
 {
 printf("[GEV]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stGEVDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chModelName,
 stDeviceInfo.DevInfo.stGEVDevInfo.chSerialNumber);
 }
 else if (stDeviceInfo.nDevType == MV_FG_CAMERALINK_DEVICE)
 {
 printf("[CML]No.%d Device:
\n\tUserDefinedName: %s\n\tModelName: %s\n\tSerialNumber: %s\n", i,
 stDeviceInfo.DevInfo.stCMLDevInfo.chUserDefinedName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chModelName,
 stDeviceInfo.DevInfo.stCMLDevInfo.chSerialNumber);
 }
 }
 if (MV_FG_SUCCESS != nRet)
 {
 break;
 }

 // Select the device.
 int nSelectedDeviceIndex = -1;
 printf("Select a device: ");
 scanf_s("%d", &nSelectedDeviceIndex);
 ClearStdin();

 if ((nSelectedDeviceIndex < 0) || (nSelectedDeviceIndex >= (int)nDeviceNumber))
 {
 printf("invalid device index, Quit\n");
 break;

Frame Grabber SDK (Windows-C) Developer Guide

136

 }

 // Open the device and get the device handle.
 nRet = MV_FG_OpenDevice(hInterface, nSelectedDeviceIndex, &hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open device error, %#x\n", nRet);
 hDevice = NULL;
 break;
 }

 // Close the trigger mode.
 nRet = MV_FG_SetEnumValueByString(hDevice, "TriggerMode", "Off");
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Turn off TriggerMode failed, %#x\n", nRet);
 break;
 }

 // Get the number of streaming channels.
 unsigned int nStreamNumber = 0;
 nRet = MV_FG_GetNumStreams(hDevice, &nStreamNumber);
 if (MV_FG_SUCCESS != nRet || 0 == nStreamNumber)
 {
 printf("No Stream available\n");
 break;
 }

 // Open the streaming channel (now only a single streaming channel is supported)
 nRet = MV_FG_OpenStream(hDevice, 0, &hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Open Stream error, %#x\n", nRet);
 break;
 }

 // Get the image size.
 unsigned int nImagePayloadSize = 0;
 nRet = MV_FG_GetPayloadSize(hStream, &nImagePayloadSize);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Get payload size error, %#x\n", nRet);
 break;
 }

 // Allocate and register the buffer of images.
 for (unsigned int i = 0; i < BUFFER_NUMBER; i++)
 {
 // Allocate the image buffer.
 pBuffer[i] = malloc(nImagePayloadSize);
 if (NULL == pBuffer[i])

Frame Grabber SDK (Windows-C) Developer Guide

137

 {
 printf("Allocate Buffer error\n");
 nRet = MV_FG_ERR_OUT_OF_MEMORY;
 break;
 }

 // Register the buffer for SDK.
 nRet = MV_FG_AnnounceBuffer(hStream, pBuffer[i], nImagePayloadSize, NULL,
&(hBuffer[i]));
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Announce Buffer error, %#x\n", nRet);
 break;
 }
 }

 if (MV_FG_SUCCESS != nRet)
 {
 break;
 }

 // Insert all buffers back to the input queue.
 nRet = MV_FG_FlushQueue(hStream, MV_FG_BUFFER_QUEUE_ALL_TO_INPUT);
 if (MV_FG_SUCCESS != nRet)
 {
 break;
 }

 // Create a thread for streaming.
 void* hThreadHandle = (void*) _beginthreadex(NULL , 0 , GrabbingThread , hStream, 0 , NULL);
 if (NULL == hThreadHandle)
 {
 printf("Create Thread Error\n");
 break;
 }

 printf("Press any key to stop acquisition.\n");
 WaitForKeyPress();

 g_bExit = true;
 WaitForSingleObject(hThreadHandle, INFINITE);
 CloseHandle(hThreadHandle);
 hThreadHandle = NULL;
 } while (0);

 // Release relative resources.
 if (NULL != hStream)
 {
 // Clear the buffer queue.
 nRet = MV_FG_FlushQueue(hStream, MV_FG_BUFFER_QUEUE_ALL_DISCARD);
 if (MV_FG_SUCCESS != nRet)

Frame Grabber SDK (Windows-C) Developer Guide

138

 {
 printf("Flush Buffer Queue error, %#x\n", nRet);
 }

 // Release the registered buffer.
 for (unsigned int i = 0; i < BUFFER_NUMBER; i++)
 {
 if (NULL != hBuffer[i])
 {
 nRet = MV_FG_RevokeBuffer(hStream, hBuffer[i], NULL, NULL);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Revoke Buffer failed, %#x\n", nRet);
 }
 hBuffer[i] = NULL;
 }

 if (NULL != pBuffer[i])
 {
 free(pBuffer[i]);
 pBuffer[i] = NULL;
 }
 }

 // Close the streaming channel.
 nRet = MV_FG_CloseStream(hStream);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close Stream error, %#x\n", nRet);
 }
 hStream = NULL;
 }

 // Close the device.
 if (NULL != hDevice)
 {
 nRet = MV_FG_CloseDevice(hDevice);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close device error, %#x\n", nRet);
 }
 hDevice = NULL;
 }

 // Close the frame grabber.
 if (NULL != hInterface)
 {
 nRet = MV_FG_CloseInterface(hInterface);
 if (MV_FG_SUCCESS != nRet)
 {
 printf("Close Interface error, %#x\n", nRet);

Frame Grabber SDK (Windows-C) Developer Guide

139

 }
 hInterface = NULL;
 }

 printf("Press any key to exit.\n");
 WaitForKeyPress();

 return 0;
}

Frame Grabber SDK (Windows-C) Developer Guide

140

Appendix B. Error Code

You can search for the detailed error descriptions according to returned error codes or error names.

SDK Error Code

Error Code Error Name Description

Normal Status Code

0x00000000 MV_FG_SUCCESS Succeeded.

General Error Codes (from 0x80190001 to 0x801900FF)

0x80190001 MV_FG_ERR_ERROR Unknown error.

0x80190002 MV_FG_ERR_NOT_INITIALIZED Not initialized.

0x80190003 MV_FG_ERR_NOT_IMPLEMENTED Not implemented.

0x80190004 MV_FG_ERR_RESOURCE_IN_USE The requested resource is in use.

0x80190005 MV_FG_ERR_ACCESS_DENIED No access permission.

0x80190006 MV_FG_ERR_INVALID_HANDLE Invalid handle.

0x80190007 MV_FG_ERR_INVALID_ID Invalid ID.

0x80190008 MV_FG_ERR_NO_DATA No data.

0x80190009 MV_FG_ERR_INVALID_PARAMETER Invalid parameter.

0x80190010 MV_FG_ERR_IO IO error.

0x80190011 MV_FG_ERR_TIMEOUT Timed out.

0x80190012 MV_FG_ERR_ABORT Operation interrupted.

0x80190013 MV_FG_ERR_INVALID_BUFFER Invalid buffer.

0x80190014 MV_FG_ERR_NOT_AVAILABLE Unreachable.

0x80190015 MV_FG_ERR_INVALID_ADDRESS Invalid address.

0x80190016 MV_FG_ERR_BUFFER_TOO_SMALL Buffer too small.

0x80190017 MV_FG_ERR_INVALID_INDEX Invalid index.

0x80190018 MV_FG_ERR_PARSING_CHUNK_DATA Failed to parse chunk.

0x80190019 MV_FG_ERR_INVALID_VALUE Invalid value.

0x80190020 MV_FG_ERR_RESOURCE_EXHAUSTED Resource exhausted.

0x80190021 MV_FG_ERR_OUT_OF_MEMORY Failed to request memory.

0x80190022 MV_FG_ERR_BUSY Busy.

0x80190023 MV_FG_ERR_LOADLIBRARY Failed to load dynamic link library.

0x80190024 MV_FG_ERR_CALLORDER Incorrect order of API calls.

Frame Grabber SDK (Windows-C) Developer Guide

141

Error Code Error Name Description

GenICam Related Error Codes (from 0x80190100 to 0x801901FF)

0x80190100 MV_FG_ERR_GC_GENERIC Generic error.

0x80190101 MV_FG_ERR_GC_ARGUMENT Parameter error.

0x80190102 MV_FG_ERR_GC_RANGE The value is out of range.

0x80190103 MV_FG_ERR_GC_PROPERTY Attribute error.

0x80190104 MV_FG_ERR_GC_RUNTIME Running environment error.

0x80190105 MV_FG_ERR_GC_LOGICAL Logic error.

0x80190106 MV_FG_ERR_GC_ACCESS Access permission error.

0x80190107 MV_FG_ERR_GC_TIMEOUT Timed out.

0x80190108 MV_FG_ERR_GC_DYNAMICCAST Conversion exception.

0x801901FF MV_FG_ERR_GC_UNKNOW GenICam unknown error.

Image Processing Related Error Codes (from 0x80190200 to 0x801902FF)

0x80190200 MV_FG_ERR_IMG_HANDLE Handle error.

0x80190201 MV_FG_ERR_IMG_SUPPORT Not supported.

0x80190202 MV_FG_ERR_IMG_PARAMETER Parameter error.

0x80190203 MV_FG_ERR_IMG_OVERFLOW Out of memory.

0x80190204 MV_FG_ERR_IMG_INITIALIZED Operation not initialized.

0x80190205 MV_FG_ERR_IMG_RESOURCE Failed to release resource.

0x80190206 MV_FG_ERR_IMG_ENCRYPT Image encryption error.

0x80190207 MV_FG_ERR_IMG_FORMAT
Incorrect image format or image format
not supported.

0x80190208 MV_FG_ERR_IMG_SIZE
Incorrect image width/height or image
width/height out of range.

0x80190209 MV_FG_ERR_IMG_STEP
The value of image width/height and step
parameter mismatch.

0x80190210 MV_FG_ERR_IMG_DATA_NULL
The address for storing the image data is
empty.

0x80190211 MV_FG_ERR_IMG_ABILITY_ARG
The image algorithm capability contains
invalid parameters.

0x801902FF MV_FG_ERR_IMG_UNKNOW
Unknown error occurred during image
processing.

Frame Grabber SDK (Windows-C) Developer Guide

142

GenTL Error Code

Error Code Error Name Description

-1001 GC_ERR_ERROR Unknown error.

-1002 GC_ERR_NOT_INITIALIZED Module or resource is not initialized.

-1003 GC_ERR_NOT_IMPLEMENTED
The requested operation is not
implemented.

-1004 GC_ERR_RESOURCE_IN_USE
The requested resource is already
occupied.

-1005 GC_ERR_ACCESS_DENIED The requested resource is not allowed.

-1006 GC_ERR_INVALID_HANDLE
The given handle does not support the
operation.

-1007 GC_ERR_INVALID_ID
Failed to connect to the specified
resource by the invalid ID.

-1008 GC_ERR_NO_DATA
The function has no data to be
processed.

-1009 GC_ERR_INVALID_PARAMETER Invalid given parameter(s).

-1010 GC_ERR_IO I/O communication error.

-1011 GC_ERR_TIMEOUT Operation timed out.

-1012 GC_ERR_ABORT
The operation is aborted before being
completed.

-1013 GC_ERR_INVALID_BUFFER
The registered buffer is not enough to
acquire images in the current
acquisition mode.

-1014 GC_ERR_NOT_AVAILABLE
Resource or information is not
available within the given time in the
current status.

-1015 GC_ERR_INVALID_ADDRESS
The given address is invalid or out of
range due to internal reasons.

-1016 GC_ERR_BUFFER_TOO_SMALL
The provided buffer is too small to
receive the expected amount of data.

-1017 GC_ERR_INVALID_INDEX The index is out of range.

-1018 GC_ERR_PARSING_CHUNK_DATA
An error occurred when parsing a
buffer containing chunk data.

-1019 GC_ERR_INVALID_VALUE
Trying to write an invalid value to the
register.

-1020 GC_ERR_RESOURCE_EXHAUSTED The requested resource is exhausted.

-1021 GC_ERR_OUT_OF_MEMORY
No enough memory for the system or
hardware of the system.

Frame Grabber SDK (Windows-C) Developer Guide

143

Error Code Error Name Description

-1022 GC_ERR_BUSY
Failed to perform the requested
operation. The current module or
instance is busy.

	Chapter 1 Overview
	1.1 Introduction
	1.2 Development Environment
	1.3 Update History

	Chapter 2 Basic Process
	Chapter 3 API Reference
	3.1 Version Information
	3.1.1 MV_FG_GetSDKVersion

	3.2 Frame Grabber
	3.2.1 MV_FG_UpdateInterfaceList
	3.2.2 MV_FG_ReleaseTLayerResource
	3.2.3 MV_FG_GetNumInterfaces
	3.2.4 MV_FG_GetInterfaceInfo
	3.2.5 MV_FG_OpenInterface
	3.2.6 MV_FG_OpenInterfaceEx
	3.2.7 MV_FG_OpenInterfaceByID
	3.2.8 MV_FG_CloseInterface

	3.3 Device
	3.3.1 MV_FG_UpdateDeviceList
	3.3.2 MV_FG_GetNumDevices
	3.3.3 MV_FG_GetDeviceInfo
	3.3.4 MV_FG_OpenDevice
	3.3.5 MV_FG_OpenDeviceByID
	3.3.6 MV_FG_CloseDevice

	3.4 Stream
	3.4.1 MV_FG_GetNumStreams
	3.4.2 MV_FG_GetPayloadSize
	3.4.3 MV_FG_OpenStream
	3.4.4 MV_FG_CloseStream
	3.4.5 MV_FG_StartAcquisition
	3.4.6 MV_FG_StopAcquisition
	3.4.7 MV_FG_GetFrameBuffer
	3.4.8 MV_FG_RegisterFrameCallBack
	3.4.9 MV_FG_ReleaseFrameBuffer
	3.4.10 MV_FG_GetImageBuffer

	3.5 Buffer
	3.5.1 MV_FG_SetBufferNum
	3.5.2 MV_FG_GetBufferChunkData
	3.5.3 MV_FG_AnnounceBuffer
	3.5.4 MV_FG_RevokeBuffer
	3.5.5 MV_FG_FlushQueue
	3.5.6 MV_FG_GetBufferInfo
	3.5.7 MV_FG_QueueBuffer

	3.6 Image Processing
	3.6.1 MV_FG_DisplayOneFrame
	3.6.2 MV_FG_SaveBitmap
	3.6.3 MV_FG_SaveJpeg
	3.6.4 MV_FG_SaveTiffToFile
	3.6.5 MV_FG_SavePngToFile
	3.6.6 MV_FG_ConvertPixelType
	3.6.7 MV_FG_ReconstructImage
	3.6.8 MV_FG_HB_Decode

	3.7 Parameters Control
	3.7.1 MV_FG_GetXMLFile
	3.7.2 MV_FG_GetNodeAccessMode
	3.7.3 MV_FG_GetNodeInterfaceType
	3.7.4 MV_FG_GetIntValue
	3.7.5 MV_FG_SetIntValue
	3.7.6 MV_FG_GetEnumValue
	3.7.7 MV_FG_SetEnumValue
	3.7.8 MV_FG_SetEnumValueByString
	3.7.9 MV_FG_GetFloatValue
	3.7.10 MV_FG_SetFloatValue
	3.7.11 MV_FG_GetBoolValue
	3.7.12 MV_FG_SetBoolValue
	3.7.13 MV_FG_GetStringValue
	3.7.14 MV_FG_SetStringValue
	3.7.15 MV_FG_SetCommandValue
	3.7.16 MV_FG_SetConfigIntValue
	3.7.17 MV_FG_FeatureLoad
	3.7.18 MV_FG_FeatureSave

	3.8 Message Notification
	3.8.1 MV_FG_RegisterExceptionCallBack
	3.8.2 MV_FG_RegisterEventCallBack

	Chapter 4 Data Structure and Enumeration
	4.1 Data Structure
	4.1.1 MV_CML_DEVICE_INFO
	4.1.2 MV_CML_INTERFACE_INFO
	4.1.3 MV_CXP_DEVICE_INFO
	4.1.4 MV_CXP_INTERFACE_INFO
	4.1.5 MV_FG_BUFFER_INFO
	4.1.6 MV_FG_CCM_INFO
	4.1.7 MV_FG_CHUNK_DATA_INFO
	4.1.8 MV_FG_CONVERT_PIXEL_INFO
	4.1.9 MV_FG_DEVICE_INFO
	4.1.10 MV_FG_ENUMVALUE
	4.1.11 MV_FG_EVENT_INFO
	4.1.12 MV_FG_FLOATVALUE
	4.1.13 MV_FG_FRAME_SPEC_INFO
	4.1.14 MV_FG_GAMMA_INFO
	4.1.15 MV_FG_HB_DECODE_PARAM
	4.1.16 MV_FG_INPUT_IMAGE_INFO
	4.1.17 MV_FG_DISPLAY_FRAME_INFO
	4.1.18 MV_FG_INTERFACE_INFO
	4.1.19 MV_FG_INTVALUE
	4.1.20 MV_FG_OUTPUT_IMAGE_INFO
	4.1.21 MV_FG_RECONSTRUCT_INFO
	4.1.22 MV_FG_SAVE_BITMAP_INFO
	4.1.23 MV_FG_SAVE_JPEG_INFO
	4.1.24 MV_FG_SAVE_PNG_TO_FILE_INFO
	4.1.25 MV_FG_SAVE_TIFF_TO_FILE_INFO
	4.1.26 MV_FG_STRINGVALUE
	4.1.27 MV_GEV_DEVICE_INFO
	4.1.28 MV_GEV_INTERFACE_INFO

	4.2 Enumeration
	4.2.1 MV_FG_BUFFER_QUEUE_TYPE
	4.2.2 MV_FG_CFA_METHOD
	4.2.3 MV_FG_CONFIG_CMD
	4.2.4 MV_FG_EXCEPTION_TYPE
	4.2.5 MV_FG_GAMMA_TYPE
	4.2.6 MV_FG_NODE_ACCESS_MODE
	4.2.7 MV_FG_NODE_INTERFACE_TYPE
	4.2.8 MV_FG_PIXEL_TYPE
	4.2.9 MV_FG_RECONSTRUCT_MODE
	4.2.10 MV_FG_RESOLUTION_UNIT

	Chapter 5 Macro Definition
	Appendix A. Sample Code
	A.1 Acquire Images with Callback Function
	A.2 Acquire Images with Internal Buffers
	A.3 Acquire Images with User Registering Buffers
	A.4 Convert Pixel Format
	A.5 Get Chunk Data
	A.6 Load Dynamic Link Library
	A.7 Receive Events

	Appendix B. Error Code

